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BEARINGS ONLY AIR-TO-AIR RANGING

1. INTRODUCTION

Airborne passive infrared search and track (IRST) devices, once they have detected and started
to acquire the track of a point target, do not provide immediate estimates of the target’s location,
range and velocity. It is crucial, of course, to obtain such estimates. As a result, it is desirable to

have effective ranging algorithms as a component of a passive IR detection system.

It is in the nature of passive IR detection from an ai'dborne platform that information regarding

the target takes the form of collections of bearings (azimuth and ailtitude angles) of the target relative

to the observer, who himself is in motion. Target parameters, such as location and velocity, are thea
derived from non-linear functions (typically as ratios of sums of trigonometric functions) of the bear-

Passive ranging has not yet received the attention given to the problem of target detection. As a
result, the literature on the subject is relatively sparse, and the publications that do exist [1-5] deal
mainly with the simpler two-dimensional problem of surface-to-surface passive ranging. Furthermore,
the {ocus of each of the published papers has been on the presentation of a particular methodology,
with vnly a few examples of its performance and no real attempt to relate performance to the parame-

ters ~f observer and target motion and sensor characteristics.

The purpose of this report is to present the results of a study of the performance of a variety of
air-to-air passive ranging techniques, particularly with regard to the behavior of the mean and stan-

dard deviation of range estimates as target location and motion, observer motion, sensor resolution

Manuectipt spproved Jasuary 21, 1988.




and length of track ar= varied. Attention has been concentrated on the cases of a fixed target and of a
target moving at constant velocity. although the computer programs deveioped to simulate and analyze
these cases can be used with any specified type of observer and target motion. The methods selected
involve least squares fits using all observed bearings, least squares fits using observed azimuths only
(effectively reducing the problem to two dimensions), and combining ‘‘minimal estimates,’’ which are
closed-form solutions for a target that produce a selected small number of bearings. Details of each

method are presented in the appropriate sections of the sequel.

In this report, the process of obtaining estimates of the range and, where appropriate, velocity of
a target by a moving obeerver is simulated. It is assumed that bearings are obtained at regular inter-
vals (taken to be | second in nearly all cases considered) and that errors consist of independent Gaus-
sian errors in azimuth and altitude measurements with zero mean und standard deviation of 0.333
mrad. For fixed targets, accurate estimates of target location (to within a few perceat of the true
values) can be obtained within sbout 30 seconds (assuming one set of bearings is obtained each
sccond) for nearly any combination of target location and observer motion. If the target is initially
well off-axis, such accuracy can be obtained in considerably less tine, while if the target is directly in
froat of the observer when first detected, more time will be needed for a good estimate. A sound
strategy then is for the obeerver, having detected the target, to accelerate in order to put the target in
an off-axis position as quickly as possible. Furthermore, range estimates can be obtained in a compu-
tationally simple manner by using the sequence of azimuths to obtain successive estimates of the
target’s x and y coordinates and a single aititude angle to provide an estimate of the z component.
Moving targets commonly require some 60 seconds for good estimates of target location and velocity;
this figure is quite sensitive to the specifics of the target’s initial position and the relative motion
between observer and target. Unlike the fixed target case, where a good strategy for the observer can
be determined a priori, highly effective maneuvers for the observer in the case of a moving target can

only be determined after a reasonable estimate of the target’s velocity has been obtained. Moreover,

[




it appears that least squares estimatiou of the location of a moving target will, for certain combina-
tions of observer and target motions, ~onsistently produce estimates based on 40 to 60 sets of bearings
that are far from the true values. In cther cases, estimnates cluster, in proportions that depend on tar-
get and observer motion parameters, about two or more widely separated values, one of which may

be the actual range of the target. Further study it required for a more complete understanding of this
phenomenon.

It should be pointed out that the most commonly cived method for performing passive ranging
has been the application of an extended Kalman filter to the sequence of obtained bearings. While
this method has the advantage of producing estimates recursively, and therefore (perhaps) more
rapidly, it has the disadvantages of requiring linearization of the problem, which could entail a loss of
accuracy in the estimator, and of requiring initial estimates (actually nc more than guasses) of target
parameters and estimation error statistics, which makes estimates depend on other quantities than the
observed bearings. See [3] for more on this aspect of the Kalman filter. Instead, non-linear least-
maﬁmﬁm.wmmmummisequiﬂemmmmmﬁng,ismdmommme
desired estimates in this report.

2. BACKGROUND

A point target, located at T = (x,y,z), has bearings 6 and ¢ relative to an observer at the ori-

gin, where

tand = y/x, sing =z/r, r®=3x2+y:+ 22,

Bearings-cnly ranging methodology requires a moving observer, an appropriatz assumption for an
air-to-air srengrio. The coordinate system used will be chosen so that at the cutset of the ranging
p-ocedure, when the target is first detected (i.e., at time ¢ = 0), the observer is considered to have an

initial velocity vq in the +x direction.




In besrings-only ranging the observer obtains a sequence of sets of measurements or the target’s
bearings, and from this sequence, together with knowledge of his own trajectory, attempts to deter-
mine the relevant target motion parameters, the most important of which are the target’s initial loca-
tioz, range and velocity. A single set of bearings is not sufficient to estimate any of these features of
the targes’s motion, but it will provide information about the line of sight between the observer and
the target at the time the bearings were obtained. Additional sets of bearings then allow estimation of
target motion parametcrs thrcugh what are effectively triangulation procedures; i.e., for a fixed tar-
get, intersections of lines of sight are determined.

This report will be concerned with observed (measured) bearings, which are estimates (cor-
rupted values) of the target’s true bearings. Estimates are, of course, realizations of random variables
referred to as estimators. To be consistent with statistical usage, estimators will be denoted by upper
cazs symbols, whereas their estimates will be written using the corresponding lower case characters.
For example estimators of 0, the arget's azimuth, and ¢, its elevation, may be denoted by H and P
respectively; vorrespoading estimates will be designated h and p. In general, true values of quantities
derived from 6 and ¢ will be denoted by lower case Greek letters, estimators by upper case Roman
letters, and meesured values by corresponding lower case Roman symbols. Frequently, bearings will
be identified by subscripts or by functional dependence (6(t), ¢(r)). In such cases, H, P, and other
estimators and all estimates will be similarly modified. If the true bearings are @ and ¢, then the
measured bearings, h and p, are assumed to be realizations of independent Gaussian random variables
H and P with a common variance; i.e. H ~ N (8,¢%) and P ~ N (0,¢%). The purpose of this report
is to specify the statistical behavior of various bearings-only ranging techriques in tcrms of observer

motion, target motion and measurement errors.




3. LINE OF SIGHT STATISTICS

Although a singie line of sight does not specify anything about the range of the target. it Jdoes
provide an estimate of the direction in which the target lies. As a result, given that the estimate of
the direction is sufficiently accurate, all that is needed to locate the wrget is an estimate of any of its
coordinates. From the poirt of view of determining statistical behavior, the process of estimating a
single coordinate of the target’s location is much more amenable to analysis and simple computational
procedures than is that of diroctly estimating its range. Present day infrared sensors provide estimates
of lines of sight that are extremely good, so that we may chcose to pursue bearings-only ranging as a
problem in estimation of a single target location coordinate with negligible loss of accuracy. This is
illustrated in Figure 1, where for a fixed ‘‘cone’’ of probebility, say p, a single line of sight is seen
0 yield & small spread compared to the area comnion to two such cones, which is a region that has
probability p? of containing the target. Figure 1 also illustrates that the intersection of two lines of
dd:m:bumofmemga‘smhoddm.mdmntheuﬁmﬁmwﬁonbem
mMam.W'sWMMOW. Furthermore, while the present
topic is referred to as ‘‘passive ranging,’’ it is really ‘‘passive location,"’ since to know only that a
potential target is, say, 35 nautical miles away is to know practically nothing about the position of the
target. Fortunately, when line-of-sight errors are small, the issues of range and location estimation
are effectively equivalent.

Givsnd:ombaﬁngsOand‘ofnmmhdvetomobséﬂerattheoﬂgin,thetmelineof
sight from the observer to the target is along the unit vector < cosf cos ¢, sin 0 cos &. sin 6>,
which we will denote by <§,, &, & >. On the other hand. observed bearings h and p are realiza-
tions of Gsussian random variables H and P, with H ~ N (8, 0°) and P ~ N (0. o), and they

determine an observed line of sight with unit vector

<ey, €3, €3> = <coshcosp,sinh cosp,sinp>,




GEOMETRIC ISSUES
in
FIXED TARGET RANGING

—_—

Figure !}

i
-




which i3 in trn a realization of the random vector

<E\, E Ey> = < cosHcosP,sinH cos P,sinP >,
Purthermore, we may write H = 8 + U, and P = ¢ + V, where both U and V are independent

Geussian random variables with mean O and variance 2. Thus,
Ey=cosHcosP mcos (9 + U)cos (¢ + V)

= (cos § cos U ~ sin 8 sinU) (cos ¢ cos ¥ - sin ¢ sin V).
In practics we expect t0 have ¢ < <1, 30 that we may use the approximations sin U = U and

cos U = 1 — U?2, and simil v’y for V. Thus

E,=[(1-U%2)cose - Usinb) [l ~ V3/2)cos d ~ Vsin ¢].
From the independence of U and V' the expected value of E| is easily obtained:

E(E,) = cos0cos ¢ (1 — 0?72 = § (1 - o).
After a bit of algebra we also obtain, ignoring tenns higher than o2,

Var (E;) = E(E}) — (E(E)R = o (cos? 0 sin® ¢ + sin? 0 cos? ¢).
Similarty,

E;=msinH cos P = [(1 ~ U2/2) sin# + Ucos ] [(1 — V3/2)cos ¢ ~ Vsin ¢],
from which it follows that

E(Ey) = sinfcosd (1 - 272} = (1 - o%), and

Var(E;) = o*(cos’0cos’¢ + sin?dsin?¢).
Although, Ey can always be obined from the condition that £} + E} + EJ = 1, we still specify

the marginal distribution of E; = sinP = (1 — V?/2)sin¢é + Vcos¢:

E(Ey = sinéd(l - ¢2/2) = §&(1 - ¢*/2), and

Var(Ey) = dicos’d.




Nots that for certain values, e.g. 0 = ¢ = 0, or § = ¢ = x/2, the above formulas yield vari-
ances of 0 in some cases. This is of ourse due to the omission of high order terms. In reality, for

0 = ¢ = 0or x/2, Var(E,) = ¢*, for example.

To obtain a more complete description of the behavior of lines of sight, the pairwise behavior of
E,, E; and E, needs t0 be examined. Recall that the covariance of two random variables X and Y,

denocted Cov (X, Y), is obtained by Cov (X, Y) = E (XY) - E(X)E(Y). Calculations yield:

Cov(E\,E)) = dPcosdsinf(l — 2cos?¢),
Cov(E|,Ey) = — dPcosfcosésing, and
Cov(Eq,Ey) = - d*sinfcos¢sing.

The puint of the above analysis is that errors in range estimates due to deviations of estimated
lines of sight from their true values are on the order of a*R, where R is the true range of the target.
For example, using ¢ = 0.333 mrad, then even for A = 0 + 30 and p = ¢ + 30, the range and
individual coordinate estimates are within 0.1% of their true values. Thus with negligible additional
loss of accuracy, range estimates may often be reduced to estimates of a single target location coordi-
nate. Purthermore, with knowledge of the individual and joint statistical behavior of the line of sight
wouponents, one could obtain slight improvemeats on estimates based on lines of sight. (There
appears to be litte practical advantage in doing so, Kowever.)

4. FIXED TARGET RANGING

In a number of situations it is necessary to estimate the distance to a target which is known (or
assumed) to be stationary. Examples are distant small clouds, nearby cloud edges, or objects fixed on
the ground.

Three distinct methods will be presented for estimating the range of a fixed target. The reason

for using a multiplicity of approaches is that bearings only range estimation is a non-linear estimation




problem, ard 30 the investigator is faced with ceriain trade-offs when selecting the cstmator to be
used in a particular application. These trade-offs invoive bias and efficiency of the estimator, compu-
tational requirements and ease of use in recursive updating schemes, and analytic tractability. (In
linear estimation problems, such considerations do not arise since least squares estimators are ‘‘the’
choice according to all of the preceding criteria.)

All of the methods operate on a common set of assumptions. Specifically, N sets of bearings
are assumed, resulting in 2N measuremerits (N azimuths and N aititudes) with which to estimate the
thres target coordinates. The kth set of bearings in the collection is denoted by A(k) and p (k) and
the location (assumed known without error) from which the obeerver obtained the kth set of bearings
by &(k), y(k), 2(k)). When it is relevant to the discussion, we will make use of the fact that the
bearings are obtained in a sequential manner.

In assessing the performance of an estimaior, many different combinarions of target location,
observer motion and other parameters of the oboervation process must b+ measured. This has been
dooe for each of the selected estimators; results are given in the following sections.

4.1 Least Squares Range Estimation

Whea N >1, the most commonly used technique is that of least squares estimation of the unk-
nown parameters. For the bearings only ranging problem, two different functions sugges: themselves
as criterion functions whose sum of squares is to be minimized. The first is simply the difference

between obeerved and fitted bearings; i.e. we minimize with respect to x, y and 2:

2 2
- _ y = yk) _ a1 ())
Sy ; [h(k) Arctan [x = ® + ? pk) — Arcsin ) . (D




where r3(k) = (x - x(k))? + O = y(®)?* + (z = z(k))*. The second function transforms this
difference between angles into a difference between functions of the angles. Specifically, we minim-

ize with respect to x, y and z:

2 2
- Yy —yk) . _ 2z = zk)
S, ? [tanh(k) * —x(k) + ? sinp (k) k) @

Simulations have shown that in many cases these functions yield very similar estimates, but in those
cases where there is a practical diffcrence, minimizing S, more often produces estimates that are
closer to the true target coordinates. Consequently, studies of simultaneous least squares estimation
of all three target coordinates have been based upon minimizing §,. A closed form solution of the
normal equations for S, (i.e. the system of thres equations resuiting from setting the partial deriva-
tives of §; with respect to each of x, y and z equal to zero) does not appear to be readily obtainable,
30 non-linear least squares estimation software (the SNLSE non-linear least squares mimatioﬂ pack-

age of the MATHLIB subrouting library) was used to produce estimates from simulated sample data.

In order to assess the performance of this least squares estimator, a variety of initial target loca-
tions and observer motions of either constant velocity or constant acceleration were selected. For
each such target/observer combination the number of bearings taken and the time between successive
bearings were varied methodically. With all relevant parameters chosen, simulations were performed
by determining the correct bearings, corrupting them by addition of independent samples from a
Gaussian N (0, ¢?) distribution, and then using the non-linear least squares software to obtain an esti-
mate of the target location. Typically this was repeated 100 times, so that for a selected scenario the
statistics (mean, median, standard deviation, third moment, and selected percentiles for each target
coordinate as well as range) for a sample of size 100 were determined. Tables Al and A2 (see
Appendix) show the results of two such analyses, while Fig. 2 is a plot of the sample standard devia-
tions as a function of the number of points on the track, for a selected set of values of time between

bearings. Examination of the tables and the plot supports the intuitively appealing notion that for a

10
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given amount of time, the estimator thit involves the largest number of bearings provides the best
estimate of target location. Consequently, all further analyses were carried out with bearings being
obtained at the rate of one set per time unit (assumed to be 1 second). Further examination of Tables
Al and A2 also supports the argument based on the geometry of Figure 1 that range estimates are

biased towards overestimating the true range.

Even after the interval between successive bearings has been fixed, a large number of combina-
tions of sensor, observer and target parameters still remain. In order to reduce the number of cases
to a manageable one, while preserving the geometric flavor of the relation betw~en observer motion
and target position, two particular quantities were kept fixed for most of the analyses. These quanti-
ties are the standard deviation, o, of the measurement errors in the target’s azimuth and altitude,
which was held at 0.333 mrad, and the initial observer velocity, which was fixed at 0.16 nnv's in the
X divection. These values were chosen because 0.333 mrad is a realistic value for errors in modern
pumvemfm'ed sensors, while 0.16 nm/s represents a typml speed for a patrol aircraft. Two exam-
pleaofthceﬂ'ectsofvaryingtbesemo;’smoluﬁonmgiveninFigum3and4. These plots and
their accompanying tables (Tables A3 and A4 in the Appendix) imply that, with all other parameters
held fixed, the standard deviation of the least sqmm range estimator varies approximately linearly

with the standard deviation of sensor error.

The plots that follow will be of standard deviations of range estimates (or their logarithms)
versus number of points on the track, with the latter being equivalent to the length of time the target
is being tracked. Standard deviations have been chosen because they are the most common measure
by which to express expected variability. Recall that for a Gaussian random variable approximately
68%, 95% and 99.5% of sample values will fall within 1, 2, and 3 standard deviations, respectively.
of the mean of the random variable. Although least squares range estimators do not appear to be

Gaussian, particularly for short tracks, for sufficiently long tracks (of length at least 20) the above

'petcenuges appear to be reasonable estimates. For example, based on Table A2 the statement can be

12
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made with a high degree of assurance that, at least 90% of the range estimates of a target initially
located at the point (50, 40, 2) nm would be within 0.5 n.a of the true range of 64.06 nm for an
observer traveling with initial velocity <.16, 0, 0> nm/s and constant acceleration <0, -.006, 0>
nm/s?, obtaining bearings every second for 25 seconds. Alco, although least squares estirnators are
biased, the bias has been found to be small compared to expectcd sampling error, so that nearly all of

the information about the reliability of least squares estimators lies in the sample standard deviation.

With the resolution of the sensor and the initial velocity of the observer fixed, the remaining
relevant parameters are the target’s range, its initial direction relative to the ob~srver, and the motion
of the obeerver. As far as iritial target direction and observer motion are concerned, two characteris-
tic cases will be considered for each: (a) targets that are initially ‘‘in front of’’ the observer; i.c. tar-
MthwmdeylOdemorlm,anda)targmthatm“well
off-axis’’ — targets with initial azimuth approximately 40 degrees or more. It is tacitly assumed that
the sensor is limited to azimuths 45 and 45 degrees, although on occasion this limitation is ignored.
The observer was taken to be moving with either constant velocity or constant acceleration. In the
mmmmofmnmuy 1g (.006 nm/sec?) were used in the simulations. For targets
initiaily in front of the observer, two different constant accelerations were considered, while for off-
axis targets only a constant velocity observer and one with coastant acceleration in the positive x
direction are treated. The reason for the latter restriction is that once the target is well off axis, any
appreciable acceleration in any but the x direction will either remove the target from the seasor’s field

of view or bring the target into a less favorable head-on position.

The effect of range alone is seen in Figures 5 through 9, where for fixed observer motion and
target direction we see the effects of ever increasing range. Figures S and 6 deal with a target ini-
tially well off-axis (initial azimuth = 38.7 degrees) for a constant velocity and accelerating observer
respectively, while PFigs. 7, 8 and 9 repeat the situation for a head-on target (initial azimuth = 11.3

degrees). Note that these are plots of the logarithms of sample standard deviations against track

13
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leagth. Logarithm piots were chosen in order to fit a wide range of values on a single plot, but
incidentally the plots show that from about 20 seconds on there is a roughly log-linear relation
betwesn track length and sample standard deviation. This suggests that afer approximately 20
ssconds, estimation error falls off approximately exponentially with length of track. Examination of
the tables for these graphs (Tables A7 through All) indicates that, for any of the piots, doubling the
target range roughly multiplies the sample sandard deviation by four. This suggests that the stundard
deviation of the lesst squares range estimetor varies as the square of the range, independent of track
loagth, targut directina and obeserver motion.

The precediag five graphs were inseaded 10 show the effects of range on accuracy of the estima-
wr. The mext two graphs indioate the effect of initial target direction on the estimate. Figures 10 and
11 (also Tables Al12, Al3) present the errors in cstimating the range of a target initially 40 nm away
from the cbserver for imitiel asicuuths of 45°, 40°, 30°, 20°, 15°, 10° and $° for two different
obessrver motions. Nots that for aa accelerating cbesrver, the effect of initial target direction essen-
tally disappesrs afier 25 seconds. Figure 12 (also Tables A14, A1S) shows the results of varying the
direction of a target whose initial x coordinste is fixed, in this instance at 50 nm. Note that for short
tracke, target direction effocts dominmte; i.e. for up to 1S seconds estimates of the target at (50, 10,
2) (Rangs = 31 nm) are less relisble than thoss of the target at (50, 40, 2) (Range = 64 nm),
despite the fact that in the latter case the target is 13 am further awsy. For sufficiently loag tracks,
however, range plays the dominsst role. Figures 13 and 14 are close-up looks at the curves in Figure
12.

The final parameter is obeerver motion. Figures 1S through 17 (where Fig. 16 is a closeup of
the right end of Pig. 15) show the effects of varying observer acceierstion for on- and off-axis tar-
gots. Nots thet in the short rum very unreliable estimates can arise from an obeerver accelerating in
the “‘wrong” direction, while over a logger period of time accelerstion in any direction produces
more accurate range estimates then does remaining at the same velocity. This of course is the resuit
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of the obeerver moving so that the target passes directly in front of him somewhere along his trajec-
tory. Not inciuded here are plots of other possible observer motions, such as acceleration out of the
x =y plans. Such accelerations were in fact considered, but all cases examined strongly suggest that -
the only important features of observer acceleration are the magnitude of the accelcration in the x
direction and the magnitude orthogonal to the x direction.

In summary, the salient features of least squares estimation of position and range of a stationary
target are: (1) the most reliable estimates come from targets that are well off axis, (2) for short
tracks relisbility is desermined more by the direction of the target than by its range, while the sita-
tiom reverses itself for longer tracking times, (3) regzrdiess of target direction and range, after some
30 secomds the standard deviation of the range estimate is no more than a percent or two of the true

range of the target.

mummmwmmmmmm'amly
short period of time, the method has some distinct drawbacks. The first disadvantage is that of
requiring computationally compiex non-linear least squares software. While such software is readily
available, its use consumes considerable amounts of computer time. For example, it required an
average of one and a half hours of CPU time on a VAX 11/780 to yield the 168 sampie standard
deviations that were plotted in each of Figures S through 9. Another disadvantage of this approach is
that it does not take advantage of the sequential manner in which bearings are obtained by the
obeerver. An ideal scheme would use each new pair of bearings to update the current estimate of tar-
get location in a computationally simple manner. (A truly ideal method would be simple enough to
allow updating to be done by hand, particularly during test and debugging phases.) For linear estima-
tioa problems the desired adaptive estimation procedure is available in the form of the Kalman filter,
which is a recursive method for determining the standard linear least squares fit of the model to the
data. Kalman filters have been applied to ship-to-ship pessive ranging problems {2,3], where the

problem is viewed as two-dimensional, bearings consist only of azimuths, and the modei has been
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linearized in order to apply the filter. One of these references [3] dwells on the pitfalls of this
method, particulariy regarding the sensitivity of short track estimates to the values of required initial
estimates that must be supplied before any measurements have actually been taken. Fundamental to
the use of the Kalman filter is an initial estimate of the error covariance matrix for the quantities
being estimated, in addition to an initial estimate of their values. Unfortunately, the covariance
depends on the target's range, so initial estimates are apt to be very unrelisbie, and it may take quite
a long time for the data to correct for a poor guess. On the other hand, non-recursive least squares
fiting requires only an initial position estimate, to which the procedure is not particularly sensitive.
A final drawback of both is that they are purely numerical schemes, providing no analytic insight into
the roles played by target range and direction or by observer motion in the siatistical behavior of the

4.2 Azimuth Only Least Squares Range Estimation

Since it has already been established that, given small errors in bearings measurements, accurate
estimation of a single target coordinate is sufficient to yield good estimates of the other coordinates,
and since much of the difficulty in dealing analytically with the S, and §, criterion functions arises
from terms involving aititude angles, azimuth-only estimates of x and y were considered. These
involved minimizing, with respect to x and y,

r 2
- - b2 1(5)
Sy ? \h(k) Arctan [1 = x(k) 3
r 2
S, = h(k)) — Y - y&)
4 l; Ltlll( (3)] . —x(k)] C)}

However, S; does not lend itself to a simple closed form solution of its normal equations. Neither
does §,, but a modified form of it does provide the desired simplicity. Setting g(k) = tan(h(k)),
define

Sy = gl(v - y®) - gk) & - x(k) 1. %)

3




Bquating to 2ero the partial derivatives of Sy with respect 0 x and y, we obtain the normal equations
h‘S;:

yTak) - Tak)yk) -~ x Tak) + Tgik)xk) = 0

Ny = Lyk) - xTgk) + Lgk)xk) = 0.
~ Solving these equations, we obtain solutions £ and § that satisty

_ TEs®) - §Eatki(k) - Taknk) + P & (31(9)

* Toik) - gLsk)

(6)

9 =7 + 4 - =Taktna), D

whare 7 = LEy() md § = LT,

These ostimmates, which can be very easily updated as new azisnthe are obtained, appear deceptively
similor © estimates of siope and imtercept in lineer regression problems. Here however, ualike the
limoar regression case, £ and § are non-tiaser functions of the obesrvationc, which we may take % be
the g(k)’s, aad 30 their statistical behavior canmot be readily desormimed in 22 analytic manner.
Insisad, as was dons in the previous setion, simulations are performed. Onumnmmolmion
is set at 0.333 mrad, initial observer velocity at 0.16 nm/s in the x direction, and the same combina-
tioms of target range and direction and obeerver motion are used. In addition, the same sequence of
random oumbers (using IMSL’s GGNML generator of values from the standard normal distribution)
is employed ia performing both sets of simulations. This azimuth-only procedure yields estimates of
x and y oaly. Estimstion of target range requires an estimate of the target’s z-coordinate as well.
Besnd op the argument that a single line of sight is a very good estimator of the true target direction,
ostimates of 2 were obtained via the formula

2 = (tanp(O) V (&2 + 53, ®
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where p(0) is the elevation observed at time 0. The resuits of these simulations are presented in
Table A16. For comparisoa, the corresponding resuits using the standard least squares approach of
the previous section can be found in Table A7. From these tables it is clear that izimuth-only least
squates estimation mesches the accuracy of estimation using all otwained bearings. Also of interest is
the fact that for short tracks azimuth-only estimates tead to underestimate the target's true range. An
examination of the procedure with o set to zero shows that, for a typical ranging scenario, the equa-
tions for £ and § do indesd yleld x and y as solutions, but they are not especially well conditioned.
This suggosts thet the undersstimation of range might be a computational artifact, so the procedure
was rapeated using double precision arithmetic. This produced mean ranges that, surprisingly, were
cvea further from the trus rangs, albeit by rathur small amounts and with the anticipated smailer stan-
dard deviations. The umavoideble implication. is thet the cbesrved underestimation is the result of bias
in the estimator. Purther study of the bias in azimuth-only estimetors is proceeding. Azimuth-only
estimatior. has beea briefly mentionsd in the liserature [S), where it is compared with the Kalman
ﬁhb“*p&h(‘hhmﬂuﬁﬂ)dﬁn‘hmha
ruther difforent formalation. R is of significant inserest that the average smoent of CPU time required
0 generate the dam for an azioawth-only estimation equivalent 10 thet in Figures 5 through 9 was
about seven minmtes, compared with the hour-and-a-balf needed for the least squares method using all
bearings.

In summary, szimuth-only rangs estimstion is computstionally very efficient and practically
masches the accuracy of the more complicated standard least squares method. Its main drawbecks are
that it appeears to entail a bias of presently unknown nsture and oacs again is not sufficiently amenable
nﬂyﬁbﬁbhapﬁam&nmuﬂvﬂmdhwwwwm
location, observer motion and sensor resolution. In addition, azimuth-based methods do not apply in

the general moving target cass.

33




4.3 Range Estimation Based on Minimal Estimators

The third method for estimating range presented in this report aims at uncovering the manner in
which target and observer parameters affect the statistics of the estimator, at the expense of increased
uncertainty in the estimator. It is intended not so much as a practical estimation scheme (at least in
the fixed target case, where the azimuth-only ieast squaies approach is prefe. able), but as a means of
throwing light or he nature of the biases and variability inherent in bearings only estimation. The
basic idea is to use only as many of the bearings as are required in order to obtain a closed form solu-
tion for the target location that yielded those bearings. Because the resulting range estimator uses the
smallest possible number of bearings, it is referred to as a ‘‘minimal’’ estimator. Since minimal
range estimators turn out to Lave simple formulations in terms of the bearings that define them, it is
possible t0 odtain formulas frr their means and variances that hold to very good approximations.
Being based on cr, few bearings, minimal estimators are of course not very accurate. Accuracy can
be increased, and use made of all obtained sets of bearings, by combining collections of minimal esti-
mates into a single better estimate.

In the statiomary target case the three target coordinates are to be estimated, so that, at the
minimum, two sets of beurings must be obtained. Two sets of bearings yield four measurements, and
since they are corrupted values of the true bearings, they produce an overdetermined system. There
is a choice of methods for dealing with this situation. Having four measurements available to esti-
mate three location coordinates allows, by selecting all possible sets of three measurements, four dis-
tinct minimal estimates of the target location. These ~stimates may be considered singly, or as a
compogite estimate such as 4 mean or median.

While the two sets of bearings to be taken could be obtained from any two points in space,
imended applications of this study as well as avoidance of computational complexity suggest that the

first bearings, (hq, po), be taken from the origin, and the second set, (h,,p,), from the point (d,0,0).




This choice of second location is also justified by the fact that minimal estimates are often quick esti-
mates, and as such are based on bearings taken in rapid succession. As a result, since we are assum-
ing the x-axis of our coordinate system to be oriented with the observer's initial velocity, wd expect
that in a short time interval only a net change in the observer’s x coordinate can realistically be
schieved.

With the observer motion specified in the previous paragraph, and with realistic target locations
relative t0 an assumed airborne obesrver, various estimation procedures were examined for the pur-
pose of selecting one for use ir the ensuing analysis. While the performances of the various methods
were expected to be comparable for a target well off-axis, it is desired that the chosen estimator per-
form notably better, in terms of both bias and variance, when the off-axis azimuth 8, is near zero.
Conceptually, the chosen estimation procedure uses Ag and A, to obtain an azimuth-only estimate of
the target’s x and y coordinetes, and then uses pq to obtain a further estimate of the z coordinate,
whencs the range can bs estimated.

As mentionsd at the beginning of this report, the target is initially located at (x,y,2) relative to
the obssrver. Bearings A, Po, and A,, with A, being the target's azimuth relative to (d, 0,0), yield a
‘unique estimate of the target location, I = (2,$,2), obtained as follows. Letting ao = tan h, and
&, = tan A; we may write

Gy = mho - y/f 9
and
a, = anh, = §/@ - d). (10)
Solving for £ and § yields
= hlf(dl - CQ) (1)
and

§ = agk m=daga,/(@a, - ag). 12)
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Ullqdnnmmmoumofﬁghtmmmbyhoandpuwemdetemimf. Letting

bg = sec hytanp, (13)
iz follows from projecting (£, 9,2) into the x-y plane that

$ m byt = ddbya,/(a, - ap). (14)
Thus the estimated target position is 7 = (2,§,2) = £<1,aq,b0>. Now, as discussed in the sec-

tion on the statistics of lines of sight, for the small values of ¢ under consideration, < 1,aq,bo> is a
very good estimats of <1, tanfy, sec Gptangy>, the true vector relating the coordinates of the target
relative t0 the origin. Errors in estimating T, then, arise mainly from errors in X. Consequently,
attention will be concentrated on the analysis of the random variable £, particularly with regard to its
dependence oa both T and d.

Note: The preceding discussion does not apply directly when x = 0, for then both aq and b,
might be arbitrarily large. In this case, we would simply solve the same equations explicitly for §,
and obuain T = § <ay’, 1, bgy’'>, for sppropriate ay’ and by’, and perform a similar analysis for .
This, however, will not be a problem bere, since we are assuming that | 8| does not exceed 45
degrees.

R is given by R =dd;/(A4, - A), where Ag=twnH, and A4, = unH, Now
Hyw 8 + U, and H, = 0, + V, where 6 is the true azimuth of the target from the origin, 8, is
the true azimuth from (d,0,0), and U and V are independent Gaussian variables with mean 0 and a
common variance ¢ (02 < <1). Now tanHy = an(f, + U) (tand, + anU)/(1 — wndytanU). Let-
ting

a = tanfy = y/x, (15
and recalling that for small ¥, tan ¥ = ¥, we have

Ag = (ag + U)/(1 = agl). (16)
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Similarly, defining

we bave

This becomes

Factocing (o) - aw)

we obtain

ay=wnb =y/(x -d),
4, 32 (o + V)/Q - V).

d(ﬂl‘.‘v)

“‘ l‘d.y
"'u.-aa' WtV awtU
l-a.V l—ﬂbu

2 a dle, + V) (1 - dyl)

(ay—ag + (1 +ag) (V = U) + (o) -~ g UV
-ut of the denominasor, and setting

PP | C_l‘"ﬂuﬂl
o —ay a = oy

Py K + V) (1 - agl)
1+CV -0)+ UV’

7

(18)

(19)

20)

@n

22)

The following relations among C, K, o, @), X, y and d will be useful in determining the behavior

of 2, and are immediste from the definitions:

g = —
T I

x_.tg—d)
y

K&. mx, Kag=x —-d,

x(x ~-d) +y? aK+y

C= ™ p
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To obtain estimates of E(X) and Var(X) that are accurate up to the ¢* term, note that since U
and V are independent and each has mean zero, the lowest order term to which UV can make a con-
tribution is the o* term. Thus we may ignore UV terms, and write

s _ Koy —agqiU + V)

1+CWV -0
Under the approximation 1/(1 + w) = 1 — w + w2, this becomes

(24)

X = K@ -~ agyU + U)1 = C(V — U) + C¥V - V).
Performing the specified multiplication, and ignoring terms whose expected values are of degree three

and higher in o, we obtain

i = K(al — oqC(V - U) + alCz(V - U)z - aoalU + aoalCU(V - U) + V- CV(V - U))
Taking expected values and recalling that E{(V — U)?) = 242,

ER®) = K(a + #CQRaC - agay — 1))

= Kay + i*CQCKa; — Kagx; — K). (25)
Since Ka; = x and y = qpx, this becomes o

ERX = x + #C(xC - y - K).
Using the relation K + y = Cd, we have

ERX) = x + #C*2x - d). (26)

Squaring 2, dropping higher order and mixed terms, taking expected values and using the relations

(23) once agsin we obtain

EX? = x2 + A(6CK2 + y? + K? — 4ayCx? - 4KCx).
Then

Var(X) = EX? - EQX)? =

PQ2C%2 + 2C%d + y* + K? - 4ayCx? - 4KCx). 2N
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Using the relations X = Cd — y and y2 = Cdy — x(x — d), this simplifies to

Var®) = P{C@x? - 2xd + d¥) - 2x(x - d)]. 28)

Remark: In most applications x > >d, so with very little additional loss in accuracy the

moments of X take on much simpler forms; viz.

E®) = x(1 + 262CY 29)
Var(®) = ARx%(C? - 1)]. (30)
Furthermore, in this case, C3> > 1, 3o that we may use

VarX) = 23C%2. (31
Note that for a fixed range and displacement d, C increases as y decreases, i.e. as the target

becomes more ‘‘head-on.”” As a result both the bias and the variance of X increase. Not only that,
but the second order approximation used for 1/(1 + C(V — U)) becomes less accurate as C
increases. Thus even the large values of E(X) and Var(X) obtained above are actvally underesti-
mates of the true values when C is large. That C becomes infinite when the target is directly in front
of the observer is, of course, a consequence of the assumption that the second set of bearings is also .
taken from a point on the x-axis. In practice, one need not take the second bearings on the x-axis,
wmmsimﬁomthepointﬁ'omwhichthey_mtakcnwﬂlbequitenearthex—axis. As a
result, there will be increases in both the bias and variance of X as an estimator of x when range

increases, when d decreases, and for fixed range and d, when y decreases.

To improve estimates of E(f) and Var(f) when C is large, fourth order approximations of X
were obtained. Using 1/(1 + w) = 1 — w + w2 — w? + w*, including UV terms, performing the
required algebra, noting that those terms in which C has the same exponent as o dominate the others,
taking expected values and again assuming that x > >d and C>> > 1, the results are

E®) = x(1 + 26°C? + 126*CY (32)

Var(X) = 2x2C% + 32x2C30°. (33)
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The preceding estimates are the results of a great many truncations, and it is reasonable at this
point to inquire as to how good they are in practice. Table 1 shows the estimated means and standard
deviations using both the second-order and fourth-order approximations to X for a few cases. Also
included in this table are the results of simulations in which the means and standard deviations of
samples of size 1000 were obtained. Note that for large values of C even the fourth order approxi-
mation may grossly underestimate the sample standard deviation. This arises from the fact that in
reality X has infinite mean, and that in any finite sample sor e extremely large or even negative
values are likely to occur. Fortunately these extreme values do aot correspond to realistic situations,
80 in practice such an estimate can be ignored if it arises. With this in mind, extreme scores were
effectively eliminated by excluding the upper and lower 1% of the scores in the samples with large
C. The statistics of these middle 98% of the samples are shown in parentheses in the table, where
appropriate. With this proviso we see that for targets well off axis or with sufficient separation
between bearings, the second order approximations are good ones, while in other cases including the

fourth order term produces better estimates.

Table 1 — Minimal (Two-point) Estimation of Fixed Target Position
Bearings taken from (0, 0, 0) and (d, 0, 0)
Sample values are from samples with N = 1000 and ¢ = 0.333 mrad
Sample values in parentheses refer to middle 98% of scores

2nd_order approg. «th order approx.
x|y| d C | oc |E®R) | Var(X) | EX) | Var(X) | X s
25 51016 ] 807.5 | 0.27 8.6 9.5 30.2 14.0 29.4 (29.3) | 43.4 (17.9
25 5| 064 | 198.1 | 0.07 25.2 2.3 25.2 24 25.2 24
50 5] 064 | 79.1 ! 0.26 56.7 18.3 594 26.4 64.1(57.2) | 183.4 (28.95)
5 $| 1.28 | 384.5 | 0.13 51.6 9.1 51.8 10.2 52.1(51.5) | 16.3 (9.9
S5 10 | 0.64 | 401.3 | 0.13 51.8 94 52.0 10.7 52.4 11.3
50 ) 40 | 0.64 | 1589 | 0.08 50.3 3.7 50.3 3.8 50.2 3.8

In practice, of course, one does not expect to be restricted to two sets of bearings in estimating
the location of the target. Instead, a collection of sets of bearings would be available, the collection
being obtained in a sequential manner, with new pairs of bearings being added at regular intervals. A

method was sought to select pairs of sets of bearings and combine the resulting minimal estimates into




a single effective range estimate, preferably a scheme that can be easily updated as new sets of bear-
ings are obtained. Examination of sampling distributions of minimal estimators indicate that the sam-
ple median is a much better estimator of the true target location parameters than is the sample mean,
especially for small separations between the points from which the pair of bearings is taken. (That
the mdian is a better esu.nator than the mean also follows from the fact that the form of the estima-
tor of x is, effectively, x/(1 + W) where W is normally distributed with mean 0. Since, on the
average, half of the W’s in a sample are positive, and the other half negative, half of the estimates
will be less than x, and half will be larger. Thus the sample median is an unbiased estimator of x,
while the mean of x/(1 + W) is approximately x(1 + Var(W)).) The procedure chosen takes a
sequence of sets of bearings, forms minimal estimates of the target’s x coordinate from each pair of
azimuths using formula (6), and then takes the median of this collection of minimal estimates to be
the estimate of x. Estimates of y, z, and the range are then obtained using this x estimate and the
initial line of sight. This procedure is stiil under investigation, particularly regarding the best choice
of pairs of points to be used, so results are still preliminary. Table A17 giv@s the resuits of using this
method in two familiar cases.

5. CONSTANT VELOCITY TARGETS

Conceptually, the methods for estimating the target motion parameters of a moving target are
thesameuthoseforaﬁmdtuget. The practical difference is that there are more parameters to be
estimated, just how many more depending on the target motion model selected. For instance, if a
constant velocity target is assumed, there are three velocity components to be estimated in addition to
thiee location coordinates, while if a target with constant acceleration is assumed, there are yet
another three acceleration components to be estimated. Specifying that the target move along a partic-
ular type of parametric path, e.g. along the arc of a circle, requires estimating as many quaniities as

are needed to completely specify the motion. The effects of having more parameters to estimate are
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that more complicated relations exist between observer and target motions and the reliability of esti-
mators, that longer tracks must be obtained in order to estimate range and other quantities to specified
accurscies, and that the vagaries of non-linear estimatior. procedures with their reliance on numerical

methods must be accepted.

In this section attention will be restricted to constant velbcity targets. Only one estimation
method will be examined in detail—leas: squares fitting of the constant velocity mode! to the observed
bearings. In this case, there are six quantities to estimate, the three target coordinates, x, y and z, as

well as its velocity components denoted by Vx, Vy and Vz.

Studies of alternative ranging methods are ongoing. Unfortunately, moviag targets do not
necessarily stay at the same altitude, so that the azimuth-only least squares method that works so well
for fixed targets is not applicable to moving targets in general. However, in many cases a distant tar-
get will not undergo significant changes in its altitude during the period of its observasion, so that
azimuth-based estimation proredures are currently being considered. Also, as in the fixed target case,
minimal closed-form estimates of target motion parameters are available, in this case requiring three
sets of bearings to provide sufficient data to cstimate the six target values. Collections of such esti-
mates may be combined to form a single improved value. Concurrent with present efforts in the
fix:d target case, the emphasis of ongoing work in minimal estimation of moving target parameters is
on the optimal choice of sets of bearings to be combined for a single minimal estimate.

5.1 Least Squares Range Estimation
A similar procedure is used as in the fixed target case, based on the differences between

observed and fitted bearings; the expression

2
- _ y + ¢k = D)¥Vy — yk)
Se g [’l(k) Arctan [x +(k - D¥x —x(k)J ]

N k) — Arcsin | 2tk = DVz = z(k) ",
)kJ [p( ) in { ) (34)
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is minimized with respect to x, y, z, Vx, Vy, Vz,

where Pk)=(x +k =D -xk)*+ @G+Gk-DW —vk)? + @+ *k—-1Vz
- z(b).

Once again the properties of the estimator were studied by examining its performance under a
wide variety of simulated scenarios, and again the standard deviation of the 100 range estimates
obtained for each chosen combination of observer and target parameters was used as the primary
measure of relisbility. In ranging a constant velocity target, the observer cannot himself travel at
constant velocity, for then, even in the absence of any messurement errors, the obtained sequence of
bearings does not yield a unique solution for the target parameters. This can be very casily seen by
imagining two targets, each flying parallel to the obeerver, the first target at half the range and speed
of the second. As long as ths observer maintains the same velocity, these targets will yield the same
sets of bearings. Wy.hmmo@@whwmmdmmelenﬁum,
and, further, that the acceleration is held constant. |

Figures 18 through 21 show the standard devistion of range estimates as a function of track
longth for a variety of combinations of observer and target motions (also see Tables A18 and Al9).
In thess figures track lengths begin at 13 (still assuming one set of bearings per second) since for
shorwr tracks the ostimates are 30 poor that they provide no useful informstion. Figure 18 deals with
4 target that is initially in front of the obeerver, while Figs. 19, 20 and 21 examine an off-axis target.
Even a cursory examination of these graphs reveals a great deal more complexity when the target's
velocity must be estimated in addition t0 its range. The most apparent difference is that the standard
devistion of the range estimases does not monotonically decrease with the length of the track. Indeed
there are often dramstic rises in the sample standard deviation. In an effort to understand this
pheoomenon, percentiles were obtained for range estimates from samples of size 1000 simulating a

target originally at (50, 40, 1) nm with velocity <-.20, -.20, 0) nm/s being tracked by an observer
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with acceleration <0, -.006, .006> nm/s®. Tea such percentile distributions were constructed, and
in each it was found that there appear to be two distinct clusters of estimates, with approximately
15% of the range estimates being near 49 nm and the remainder scattered within a few nautical miles
of 65 nm. The sample data are listed in Table A20.

Figures 18 through 21 are the usual graphs of sample standard deviations versus track lengths,
and while they indicate irregularity in the estimation process, they do not explain its source. Figure
22, which is typical of what can arise in noo-linear least squares estimation, provides some insight
ineo the nature of the irregularities in Figs. 18 thorough 21. In Figure 22 the mean of the 100 esti-
masss is plotted as a function of track length, together with error bars corresponding to one sample
standard devistion. Here the mean range drifts away from the true range for a rather long interval of
track lengths. Thus a bias, which can be much larger than the sample standard deviation and which
depends on track length as weil as target and observer motion parameters, is introduced when target
velocity must also be estimated. As in Table A20, there may be two (or more) well separated values
around which estimates cluster; this accounts for the unusually large sample standard deviations found
for long tracks. This phenomenocn is most likely due 10 the fact that in a non-linear estimation prob-
lom in six dimensions, rather different combinations of target location and velocity may yield very
similar sequences of bearings reistive to the specified observer trajectory. Masuremnterrorsdxe;:
result in random selection, according to some as yet undetermined rules, of one of the possible
choices.

Further analysis is being performed to gain a more thorough understanding of the combined
effects of target location and velocity and observer motion on the performance of least squares estima-
tors, both in the case of a constant velocity target and, in what promises to be much more compli-
cated, the situation of an accelerating target. A final graph, Figure 23, compares the results when a
fixed target is known to be fixed, and so can be ranged using the methods of section 4, versus when

it is not assumed to be stationary, and so its lack of motion must be inferred from its bearings. This
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suggests that & comparative study of the ranging of slowly moving targets by both methods might be
m.

6. SUMMARY AND CONCLUSIONS

The performance of various air-to-air passive ranging techniques has been examined as a func-
ton of target location and motion, observer motion, and length of track. Bearings are obtained at
one-second intervals and there are independent Gaussian errors in azimuth and altitude.

For fixed targets, thres range estimation methods have been considered, each generally giving
accurate estimates of target location for track lengths of 30 seconds or less:

1) Least Squares Range Estimation—This method provides accurate range estimates within a
short tracking time, but requires computationaily complex software and extensive computer processing
time; it does not update target location estimates using sequential bearings.

2) Aximuth Only Least Squares Range Estimation—This method is nearly as accurate as the pre-
vious method but is computstionaily much more efficient. Target location estimates are readily
WUmMmobulmd This method is the best of the three methods for the fixed tar-
get case but is not directly adaptable to the moving target case.

3) Range Estimation Based on Minimal Estimators—This method uses only a small number of
bearings 30 that a closed form solution for the target location can be found. Consequently, range esti-
mates are not as accurate as in the previous methods, but explicit informstion can be obtained on the

effect of target and observer parameters on the cstimator statistics.

For moving targets, a track length of 60 seconds is typically required for good estimates of tar-
get location and velocity, and this figure is highly dependent on the observer/target geometry. Least
Squares Range Estimation has been investigated for the constant velocity target case. However, it
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was found that in some cases range estimates have a cluster point separate from that at the true range.

Further study will be required to develop a technique to resolve this ambiguity.
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# of Bearings
2

3

)

10
12
15
16
18
20
24
25

30

The upper entry in each cell is the sample mean, while the lower

entry 1is

APPENDIX

Table A1l
Least Squares Estimates ‘of Fixed Target Position
100 Samples per Cell ¢ = 0.333 mrad
Target Location: (50,50,2) Range =« 70.74 nm

Constant Observer Velocity <.16,0,0> nm/s
Time Between Bearings (se)

1 2 b 6
83.63 73.09 70.94 T1.84
61.80 12.65 5.23 3.62
73.26 -70.68 70.66 70.85
12.31 5.81 2.45 1.73
T1.67 70.86 -70.98 70.69

6.76 3.23 1.57 1.19
70.81 70.76 70.93 70.76
8,75 2.23 1.23 0.88
70.52 T0.70 70.70 70.74
3.45 1.65 0.81 0.57
70.87 70.74 70.66 70.70
1.96 0.97 0.55 0.32
70.71 T70.77 70.T1 T70.7¢
1.85 0.90 0.42 0.32
70.99 70.79 T70.75 70.77
1.59 0. 0.39 0.24
70.73 70.79 70.TH
1.17 0.59 0.26
70.67 70.73 70. T
0.96 0.3% 0.20
70.88 70.75
0.73 0.84
70.72 70.70
0.60 0.31
70.69 70.73
0.52 g.26
70.73
0.37
70.71
.0.%0
70.7%
0.31

the sample standard deviation.
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1.21
2.1

70.74
1.23

70.62

. 0.83

70.69
0.54

70.71
0.4

70.73
0.27




Table A2

Least Squares Estimates ‘of Fixed Target Position

100 Samples per Cell g = 0.333 arad

Target Location: (50,40,2) Renge = 64,06 nm
Initial Observer Velocity: <.16,0,0> nm/a
Observer Acceleratiou: <0,-.006,0> nm/s?

Time Between Bearings (s

1 2 4 6
# of Bearings ’
2 T5.85 66.11 64.53 64.98
62.07 9.71 4,91 2.93
3 66.32 64.00 63.98 64.14
10.88 4.58 1.88 1.24
4 65.87 64.14 65.23 64.02
. 5.89 2.63 1.13 .77
5 64.08 64.07 64.19 64.08
- 8,02 1.73 0.83 0.53
6 63.90 64.03 64.05 64.06
2.86 1.23 0.51 0.31
8 64,18 64.06 64.01 64.04
1.55 0.68 0.31 0.16
9 64.0% 64.07 64.05 64.08
1.44 0.60 0.23 0.15
10 64.25 64.09 64.06 64,08
1.21 0.46 0.20 0.11
12 64,06 64.09 64.07
0.86 0.36 0.13
15 64,01 64.06 64.05
0.67 , 0.19 0.09
16 64.16 64.07
0.50 0.24
18 64.05 64.08
0039 ) . 0-16
20 64,03 64,06
0.34 0.13
24 64.06
0.23
25 64,04
0.24
30 64.06
0.17

The upper entry in each cell is the banple mean, while the lower
entry is the sample standard deviation.

64.
.11

64,
.83

63.
o‘

6".
0.

64,
0.

6u4.
0.
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TABLE A3

Least Squares Estimates of Fixed Target Position
100 Samples per Cell Various o
Target Location: (50,40,2) Range = 64.06 nm
Initial Observer Velocity: <.15,0,0> nm/s
Observer Acceleration: <0,-.006,0> nm/s?

g = .1 mrad 6 = .333 .rad ¢ = .666 mrad
# Points - - _
on Track X s X s X s
4 64.27 1.77 64.18 5.58 67.97 16.78
5 64.23 1.22 63.7T4 U4,03 66.19 9.18
6 64.00 0.95 65.28 2.93 64.19 6.54
8 64,05 0.54 63.81 1.80 64.14 3.73
9 64.10 0.43 64.12 1.39 64.43 2,92
10 64.13 0.37 64.10 1.20 64.55 2.53
12 64.03 0.27 64.04 0.86 63.87 1.79
- 15 64.06 0.19 63.95 0.60 64.07 1.24
16 64.03 0.16 63.95 0.54 63.87 1.04
18 64.07 0.13 64,11 0.49 64.10 0.86
20 64,03 0.11 64,05 0.33 63.84 0,74
24 64.05 0.07 64,04 0.27 64.02 0.50
25 64.06 0.07 64.07 0.23 64.02 0,47
30 64.05 0.05 64.05 0.15 63.99 0.35
32 64.06 0.04 64.06 0.15 64.08 0,25
35 64.06 0.03 64.07 0.12 64.05 0.23
36 64.06 0.03 64.06 0.11 64.07 0.23
40 64.06 0.03 64.08 0.08 64.07 0.20
45 64.06 0.02 64.06 0.08 64.07 0.13
48 64.06 0.02 " 64,06 0.07 64.07 0.12
50 64.06 0.02 64.06 0.06 64.08 0.12
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Table Al

Least Squares Estimates of Fixed Target Position
100 Samples per Cell
Target Location:

Constant Observer Velocity: <.16,0,0> nm/s

# Points
on Track

¢ = .1 mrad

x
51.65
51.18
51.12
50.99
51.00
51.07
51.10
50.97
51.12
51.00
51.03
51.07
51.03
51.04
51.01
51.03
51.02
51.03
51.04
51.03
51.03

s
3.50
2.56
1.85
1.28
1.08
0.70
0.57
0.46
0.41
0.35
0.28

(50,10,2)

Various ¢

Range = 51,03 nm

¢ = .333 mrad

X
55.57
52.53
51.90
51.11
51.14
51.24
51.30
50.87
51 .35
50.96
51.05
51.17
51.05
51.08
50.98
51.04
51.00
51.04
51.07
51.04
51.02

56

S
16.03
8.86
6.99
§.27
3.69
2.40
1.93
1.52
1.39
1.16
0.95
0.72
0.65
0.52
o.uu
0.4
0.42
0.29
0.25
0.20
0.22

g = 666 mrad

x
186.7
57.88
56.42
51.97
51.82
51.68
51.74
50.82
51.74
50.94
51.11
51.33
51.08
51.185
50.93
51.05
50.98
51.05
51.12
51.05
51.01

S
799.7
23.03
29.67

8.97
7.93
5.07
4.00
3.08
2.83
2.33
1.90
T.u4
1.30
1.04
0.89
0.81
0.85
0.58
0.50
0.39
0.44




Table AS

Least Squares Estimates of Fixed Target Position
100 Samples per Cell
Target Location:

Constant QObserver Velocity:

# Points
on Track

OOV NOOVOOON &=

¢ = .1 mrad

x
63.84
64,20
6u4.18
64,08
64.08
64.00
64.05
64.07
64.11
64.05
64.05
64.06
64.08
64.06
64.06
64.06
64.05
64.06
64.06
64.06
65.07

S
1.70
1.40
0.92
0.61
0.49
0.4%0
0.30
0.24
0.22
0016
0.16
°u13
0.10
0.08
0.06
0.06
0.06
0.05
0.04
0.04
0.03

(50,40,2)

Various ¢

Range = 64.06 nm

<.16,0,0>

0 = ,333 mrad

x

64.74
63.11
63.95
64.09
63.91
64,30
63.86
64.16
64.06
64.02
64.12
64.03
64,02
64.08
64.07
64.04
64.05
64.08
64,06

64.06.

64.06

57

L )
6.31
4.18
2.83
2.28
1.65
1.50
1.01
0.79
0.66
0.59
0.54
0.35
0.39
0.29
0.22

1 0.22

0.21
0.16

(o e N o]
-l wnd b
- &=

nm/s

¢ = .666 mrad

X

64.u48 12,48

66.17
65.42
6%.38
64.30
63.70
64.04
64,17
6u.u42
64.01
6u4.02
64.08
64.17
64.05
64.05
64.08
64.00
64.04
64.03
64.05
64.09

9.94
6.62
4.06
3.28
2.65
2.00
1.60
1.46
1.09
1.03
0.86
0.69
0.52
0.43
0.u1
0.38
0.33
0.29
0.23
0.22




Table A6

Leaat Squares Estimates of Fixed Target Position
100 Samples per Cell Various ¢
Target Location: (50,10,2) Range = 51.03 nm
Initial Observer Velocity: <.16,0,0> nm/s
Observer Acceleration: <0,-.006,0> nm/s?

g = .1 mrad ¢ = .333 arad ¢ = .666 mrad
# Points _ - -
on Track X s x 8 X s
] 51.47 3.02 51.27 10.87 106.0 376.1
5 50.86 1.75 52.46 6.11 52.58 15.96
6 51.06 1.34 51.30 4,89 52.77 10.67
8 50.95 o0.T 51.10 2.46 50.91 4,86
9 51.12 0.57 $51.13 2.15 51.91 3.90
10 51.07 0.48 50.99 1.37 51.44 3,19
12 51.00 0,33 51.15 1,08 50.92 2.23
15 51.00 0.21% 51.08 0.61 50.84 1,40
16 51.05 0.18 51.06 0.62 51.20 11,18
13 51.03 0.13 51.04 0,46 51.04 0.86
20 51.02 0.10 51.02 0.32 50.97 0.68
24 51.03 0.06 51.06 0.23 51.02 0.43
25 51.02 0.06 51.04 0,19 51.00 0.42
30 51.03 0.04 51.05 Q.14 51.04 0.29
32 51.03 0.03 51.0 0.12 51.06 0.22
"~ 35 51.03 0.03 51.03 0.09 51.03 0.20
36 51.03 0.03 51.03 0.09 51.03 0.17
40 51.03 0.02 51.03 0.06 51.02 0.114
L 51.03 0.01 51.04 0.05 51.02 0.09
38 51.03 0.0t ‘51.03 0.04 51.02 0.10
50 51.03 0,01 51.03 0.04 51.03 0.07
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# Points
on Track
M
S
6
8
9

10

12
15
16
18
20
1y
as
30
32
35
36
4o
§S
a8
so

¢ Points
on Track

Table A7

Least Squares Estimates of Fixed Target Position
100 Samples per Cell

Constant Observer Velooity: <.16,0,0> na/s

T«(20,16,2)
R-- 25069
X s
25.83 0.99
25.63 0.63
25.70 0.52
25.65% 0.31

25.7h 0.26
25.71 0.23
25.68 Q.17
25.67 0.12
25.M 0.1
25.69 0.08
25.68 0.07
25.69 0.05
25.69 0.05
25.69 0.04
25.70 0.03
2%.69 0.03
25.69 0.03
25.69 0.02
25.69 0.02

2%5.69 0.02

25.69  0.01
T=(60,48,2)
R_~ 76.86

X s

78.00 9.21

76.97  6.04

76.73  4.08

76.93  3.30

76.66 2.38

77.22 2.18
76.58 1.86
77.00 1.15
76.85 0.95

76.81 0.86
76.95 0.78
76.81 0.52
76.81 0.57
76.89 0.42
76.87 0.32
76.83 0.32
76.84 0.31

76.88 0.24
76.87 0.21
76.86 0.19
76.86 0.17

T=(30,2%,2)

R_= 38.37

X 3
38.17 2.10
38.55 1.54
38.53 1.10
38.43 0.77
38.45 0.66
38.49 0.43
38.52 0.34
38.8% 0.27
38.53 0.25
38.45 0.21
38.87 0.17
38.50 0.13

38.47 0.12
38.48 0.10
38.%6 0.08
38.47 0.07
38.a7 0.08
38.47 0.05
38.48 0.05
38.47 6.04
38.47 0.04

T«(80,64,2)
R = 102.47
X s

100.96 17.23
103.70 11.28
108,03 8.82
102.10 5.26
103.06 1.28
102.68 3.83
102.67 2.93
102.58 2.17
102.58 1.93
102.42 1.43
102.43  1.34
102.63 1.03
102.55 0.97
102.41 0.72
102.47 0.64
102.57 0.52
102.48 0.62
102.50 0.42
102.48 0.39
102.47 0.34
102.49 0.29
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¢ = 0.333 mrag

T=(40,32,2)
R_= 51,26

} 4 ]
51.40 3.75
$51.75 2.89
51.18 2.26
51.26 1.34
51.39 1.08
51.43 0.96

51.18 0.72
51.26 0.52
51.18 o.u
51.28 0.38
51.16 0.33
51.24 0.24
51.24 0.23
51.23 0.18
51.28 0.13
51.26 0.12

51.26 0.12
51.27  0.11
$1.27 0.08
51.27 0.07
51.27 0.07
T-(100,80,2)
R_= 128.08
X S

128.57 24.88
132.02 17. 1
129.27 14,71
128,45 8.43
128.60 17.95
128.04 8.9
128.70 4.59
128.30 2.99
128.22 3.20
128.13 2,47
128.06 1.96
128.31 1.57
128.16 1.30
128.29 1.12

128.23 0.98
128,11 0.M
128.13 0.85
128.05 0.61
128.21 0.63

128.14 0.53
128.12 0,52

T=(50,40,2)
R_- 64.06

x 3
63.72 5.76
64.76  u.72
64.58  3.15
64.15  2.02
64.14  1.62

63.86 1.33
64.04 1.00
64,11 0.80
64,23 0.73

64.03 0.55
64.04 0.52
64,07 0.43
64,12

0.
64.06 0.26
64.06 0.21
64,07 0.21
64.03 0.19
6u4.05 0.17
64.05 0.15

64.06 0.12
64.08 0.11

T=(120,96,2)
R = 153,69
x s
159.52 41.31
1584.62 29.96
163.26 20.83
162.62 12.15
154.37 9.72
154,26 8.62
153.63 6.22
162.90 4.82
152.85 4.29
1S4.14 4.0

153.62 2.82
153.56 2.42
153.75 2.18
153.57 1.57
153.68 1.48
153.79 1.27
153.67 1.19
153.86 0.92
153.71  0.92
153.66 0.81
153.68 0.68
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Table A8

Least Squares Estimates of Fixed Target Position
100 Samples per Call

Initial Observer Veloecity: <.16,0,0> na/s
Observer Acoceleration: ¢,005,0,0> nm/s?

T=(20,16,2)

R = 25.69
x s
25.82 0.94
25.64 0.59
25.69 0.48

25.66 0.27
25.73 0.23
25.T1 0.20
25.68 0.14
25.68 0.10
25.70 0.08

25.69 0.06
25.69 0.05
25.69 0.03
25.69 0.03

25.69 0.02
25.69 0.02

25.69 g.02
25.69 0,01
25.69 0.01
25.69 0.01
2%.69 0.01 -
25.69 0.00
T=(60,48,2)
R_- 76.86
X ]
77.92 8.69
76.92 5.61
TT.7TA 3.73
76.91 2.90
716.67 2.06
77.17 1.85%
76.63 1.20
76.97 0.90
76.85 0.7%
76.82 0.65
76.93 0.57
76.82 0.35
76.83 0.38
76.88 0.26
76.86 0.19
76.84 0.18
76.8S 0.18
76.88 0.13
76.86 0.10
76.86 0.09

76.86 0.08

T=(30,24,2)

R = 38.47

x s
38.75 1.98
38.54 1.44
38.52 1.00
38,44 0.68
38.4% 0.57
38.49 0.36
38.%1 0.28
38.45% 0.21
38.46 0.19
38.47 0.16
38.49 0.12
38.47 0.09
38.148 6.08
38.47 0.06

38.47 0.05
38.847 0.04
38.47 0.04
38.47 0.03
38,47 0.02
38.87 0.02
38.87 0.02

T=(80,64,2)
R : 102.'7
X L]

100,94 6.4

103.51 10.38
103.76 7.86
102.09 4,62
102.97 3.M
102.62 13.23
102.63 2.m
102.55 1.72
102.5% 1.50
102.44 1,08
102.48 0,99
102.57 0.7
102.85 0.66
102.43 0.45
102.86 0.39
102.53 0.30
102.48 0.36
102.49 0.24
102.48 o0.20
102,48 0.17
102.47 0.14

¢ = 0,333 arad

T=(40,32,2)
R = 51,26

x s
51.37 3.52
S1.72 2.67
5t.17 2.06
51.25 1.18
$1.36 0.94
51.40 0.81
51.19 0.59

51.26 0,40
51.20 0.35%
51.27 0.28
51.19 0.2%
$1.25 0.16
$1.2% 0.18
St.2% 0.11
51.27 0.08
51.26 0.07
51.26 0.07
51.27 0.06
51.26 0.04%
51.27 0.03
51.27 0.03

T=(100,80,2)
R_- 128.08
x L]
t28.62 25.21
131.57 15.69
128.89 13,20
128.35 7,46
128.48 6.84
128.02 4,26
128.55 3.76
128.26 2.35
128.19 2,48
128,12 1.87
128,05 1,42
128.23 1.08
128.13 0.89
128.21 0.72

128.18 0.61
128.09 0.53
128.11 0,49
128.07 0.33

128.15 0,32
12811 0.26
128.09 0.25

T=(50,40,2)
R = 64,06
x s
63.72 5.42
64.66 4,39
64.52 2.86
6.4 1.78
64,13 1.42
63.87 1.14
64.04 0.82
64.10 0.63
64.19 0.56
64.04 0.4
64.04 0.37
64.07 0.29
64.10 0.23
64.06 0.16
64.06 0.13
64.07 0.12
64.04 0.11
64.06 0.09
64.06 0.07
64,06 0.06
64.07 0.05

T‘(|20|96.2)
R_= 153.69
X . )
159.01 38.09
158,26 26.74
162.40 18.83
152.59 10.66
154,248 8.4
158,10 7.31
153.64 5,18
153-0“ 3.6"

153.03 3.32
154,02 3.0
153.62 2.06
153.58 1.67

153.71  1.45
153.60 0.97
153.68 0.92
153.74 0.76
153.67 0.70

153.78 0.50
153.69 o0.u47
153.67 o0.¥1
153.68 0.34
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Table A9

Least Squares Estimates of Fixed Target Position
100 Samples per Cell g = 0.333 mrad
Constant Observer Veloclty: <¢,.16,0,0> nm/s

T=(20,4,2) T=(30,6,2) Te(40,8,2) T=(50,10,2)
R = 20.49 R = 30,66 R « 40.84 R - 40.03

x s X s x s x s
20,88 1.8% 31,73 4,34 41,72 7.79 §2.43 14,69
20.%0 1.18 30.95 2.98 42.29 5.42 $3.64 10,34
20.5%7 0.93 30.82 2. 40.88 4,60 52.39 6.59
20.48% 0.52 30.64 1.86 40.95 2.59 51.49 3.94
20.58 0.47 30.68 1.22 1,13 2.13 §1.19 3.4
20.51 0.84 30.72 0.80 41,23 1.86 50.68 2.64
20.48  0.30 30.73 0.65 40.69 1.35 50.97 1.90
20.47 0.22 30.59 0.51 40,88 0.96 51.14 1.54
20.52 0.19 30.7S 0.46 40.72 0.84 51.38 1.40
20,49 0.1% 30.63 0.38 40.86 0.69 $1.00 1.04
20.48 0.12 30.66 0.30 40.67 0.61 51.02 1.00
20.%50 0.08 30.70 0.2h %0.80 0.u4 51.06 0.83
20.%9 0.08 30.66 0.2 40.80 0.42 S1.14 0.66
20.50 0.06 30.68 0.16 40.78 0.32 51.01 0.48
20,50 0.0 30.64 0.14 40.87 0.24 51.02 0,
20.%9 0.04 30.66 0.13 40.83 0.23 51.04 0.38
20.49 0.0N - 30.65 0.13 40,83 0.22 50.97 0.34
20.4%9 0.03 30.66 0.09 40.85 0.19 $1.01% 0.3
20.49 0.02 30.67 0.07 40.85 0.14 51.00 0.26
20,89 0.02 30.66 0.06 40.85 0.12 51.02 0.22
20.49 0.02 30.66 0.06 - 80.86 J.12 51.06 0.20
T=(60,12,2) T=(80,16,2) T=(100,20,2) T=(120,24,2)
R = 61,22 R = 81.61 R = 102.00 R =« 122.39

x s x s X s x s
67.16 22.79 118,11 228.2 139.77 214.9 275.42 825.5
63.25 14,24 90.03 30.21 120.45 53.90 164,73 232.6
61.76 &.Mm1 87.36 20.08 112.51 50.76 157.78 71,48
61.85 7.10 81.91 11,84 104.50 17.73 123.10 24.89
60.93 8,61 83.36 8.78 108,73 18,15 125.84 21,23
62.08 §.56 82.36 8.29 102.57 10.11 125.09 18.37
60.72 2.86 82.29 5.85 103.77 9.49 123.08 12.99
61.54 2.28 82,00 4,35 102.68 6.02 121.22 9.14
61,25 1.94 81.96 3.82 102.56 6.54 121.17 8.56
61.13 1.70 81.%55 2.9 102.28 14,95 123.65 8.13
6.1 1.53 81.59 2.61 102.08 3.80 122.39 5.63
61.12 0.98 81.98 2.05 102.46 3.14 122,22 4,84
61.11 1.08 81.68 1.89 102.19 2.58 122.62 4.30
61.27 0.80 81.48 1,43 102.41 2.19 122.25 3.09
61.23 0.62 81.60 1.2% 102.29 1.92 122.44 2,91
61.16 0.59 81.82 1.01 102.10 1.77 122.66 2.46
61.18 0.58 81.66 1.20 102.11 1.65 122.37 2.35
61.26 0.45 81.67 0.83 101.96 1.18 122,76 1.81
61.23 0.38 81.6% 0.73 102.26 t1.21 122.43 1.8
61,22 0.34 81,62 0.64 102.14 1.03 122.33 1.57
61.21 0.31 81.64 0.56 102.07 0.99 122.38 1,34
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Table A0

Least Squares Estimates of Fixed Target Position
100 Samples per Cell ¢ = 0.333 amrad
Initial Qbserver Velocity: <.16,0,0> nm/s
Observer Acceleration: <.906,0,0> nm/s?

Te(20,4,2) T=(30,6,2) T=(40,8,2) T«(50,10,2)
¢ Polnts R_- 20.89 R_= 30.66 R_= u0.84 R_= 40.03
on Track X s X s X s X s
4 20,82 1.72 31.64 4,06 41,59 7.26 52.18 13.67
S 20.40 1.0% 30.91 2.77 h2.18 5.42 §3.22 9.u42
) 20.%6 0.85% 30.80 2.01 40.84 4,17 52.19 5.94
8 20.46 0.46 30.65 1.29 40.91 2.26 S1.40 3.46
9 20.57 0.%0 30.67 *1.04 41.07 1.83 $1.16 2.73
10 20.51 0.37 30.70 0.67 41,16 1.57 50.69 2.25
12 20.48 0.25 30. M 0.53 .7 1.11 50.97 1.55
1S 20.47 0.16 30.61 0.39 40.87 0.75% St.11 1.20
16 20.51 0.1% 30.73 0.3% RO.TH 0.64 51.28 1.07
18 20.%9 0.10 30.6% 0.28 40.84% 0.50 s1.00 0.78
20 20.49 0.08 30.66 0.21 80.73 0.43 St1.01 0.7
2% 20.50 0.08 30.68 0.16 40.81 0.29 51.08 0.55
2% 20.49 0.05 30.66 0.13 40.81 0.27 51.10 0.43
30 20.50 0.03 30.67 0.09 40.81 0.19 51.01 0.28
32 20.50 0.02 30.65 0.07 40.85 0.13 51.02 0.24
35 20.49 0.02 30.66 0.06 40.84 0.12 51.04 0.21
36 20.4%9 0.02 30.65 0.06 40.84 0.1 51.00 0.18
L T4) 20.49 0.01 30.66 0.04 40.8%4 0.09 51.02 0.15
s 20.49 0.01 30.66 0.03 40.84 0.06 51.02 0.12
48 20.49 0.00 30.66 0.02 80.84 0.0% 51.02 0.09
%0 20.49 0.00 30.66 0.02 40.85 0.05 51.04 0.08
T=(60,12,2) T«(80,16,2) T=(100,20,2) Te(120,24,2)
¢ Points R_= 61.22 R = 81.61 R_= 102.00 R_= 122.39
on Track X s X s x s x s
L} 66.41 20.54 ° 138.64 119.9 185.12 313.4 317.74 *
s 62.80 12.78 88.74 26.72 117.43 44,81 150.68 148.8
[ 61.65 7.60 86.63 17.96 109.83 39.41 150.72 55.97
8 61.68 6.08 81.63 10.02 103.82 15,25 122.38 21.42
9 60.92 3.96 83.02 7.54 104.04 15,14 125.08 18.06
10 61.92 3.81 g82.11 6.88 102.34 8.67 124.37 15.27
12 60.81 2.37 82.13 &4.78 103.28 7.7 122.84 10,66
15 61.46 1.76 81.89 3.40 102.49 4.67 121.32 7.15
16 61.2% 1.89 81.8% 2,93 102.39 4.97 121,38 6.58
18 61.15 1.27 81.56 2.18 102.17 3.T1 123.23 6.00
20 61.36 1.10 81.57 1.92 102.02 2.73 122.36 4,09
24 61,14 0.66 81.82 1.38 102.29 2.1%4 122.23 3.28
25 61.15 0.72 81.61 1,27 102.12 1.75 122.50 2.82
30 61.24 0.49 81.53 o0.88 102.26 1,37 122.26 1.88
32 61,22 0.37 81.60 0.74 102.19 1,17 122,410 1,77
35 61.18 0.32 81.72 0.57 102.04 1.00 122.51 1,44
36 61.%0 0.32 81.64 0.67 102.06 0.92 122.36 1.35
40 61.25 0.23 81.65 0.45 101.99 0.63 122.59 0.97
45 61.23 0.18 81.62 0.36 102.13 0.58 122.39 0.90
48 61.22 0.15% 81.62 0.30 102.06 0,49 122.36 0.77
50 61.22 0.13 81.61 0.25 102.02 0.45 122.39 0.65
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Table Al

Least Squares Estimates of Fixed Target Position

100 Samples per Cell
Initial Observer Veloocity: <.16,0,0>
Observer Acceleration: <0,-.006,0>

Ta(20,4,2)
R_= 20.49

X s
20.74 1.50
20.%0 0.86
20,53  0.67
20.46  0.34
20,54 0.28
20.51  0.2%
20.38  0.16
20.48  0.10
20.50 0.08
20,49  0.06
20.49  0.05
20.49  0.03
20.39  0.03
20.49  0.02
20.50 0.01
20.%9  0.01
20.49  0.01
20,49  0.01
20.49  0.01
20,49 0.0t
20.49  0.00

T«(60,12,2)
R_= 61,22

X 3
64.68 15.93
61.90 9.40
61.30 5.54
61.39 4,01
60.98 2.65
61,64 2.35
60.96 1.42
61.34 0.96
61.21 0.79

61.18 0.67
61.29 0.55
61,18 0.32

61.19 0.34
61.23 0.22
61.22 0.16
61.20 Q.18
61.11 0.14
61,23 0.10
61.22 o0.08
61,22 0.07
61.22 0.06

T=(30,6,2)
R_» 30.66 -
X 3
31.38 3.34
30.8» 2.21
30.7% 1.50
30.65 0.90
30.6% 0.72
30.68 0.44

30.70 0.33
30.63 0.23
30.70 0.20
30.65 0.16
30.66 0.11
30.67 0.08
30.66 0.07
30.67 0.05
30.66 0.04
30.66 0.03
30.66 0.03

30.66 0.02
30.66 0.02

30.66 0.01
30.66 0.01
T=(80,16,2)
R = 81.61
X s
90.41 78.83
85.28 18.25
84,55 12.28
81.37 6.48
82.37 4.92
81,80 4,14
81.86 2.82
81.72 1.87
81.70 1.58
81.59 1.11
81.57 0.97
81.70 0.64
81.59 0.59
81.58 0.37
81.61 0.32
81.65 0.24
81.62 0.28
81.63 0.18
81.61 0.15
81.61 0.12

81,61 0.10
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g = .333 mrad

T=(40,68,2)
R = 40.84

X s
41,37 5.97
41.82 b.19
50.77 3.09
40.84 1.59
40.96 1.22
41,02 1.02

40.75 0.68
40.3% 0.83
40.77 0.36
40.85 .27
40.78 23

o

0.
50.83 0.14
40.83 0
h0.82 0
40.8% 0.
40.84 0.06
4c.84 0.05
40.84 0.04
40.84% 0.03
40.84% 0.02
40.84 0.02

T«(100,20,2)
R_= 102.00
X S
130.87 230.0
111.7% 30.19
105.27 22.72
102.79 10,22
102.80 9.24
101.98 5.58
102.59 4.50
102.24 2.53
102.16 2.63
102.05 1.91
101,97 1.35
102,13 0.98
102.04 0.80
102.11 0,60
102,09 0.50
102,01 0. ut
102,03 0.38
102.00 0.25
102.05 0.23
102,02 0.19
102,01 0.17

T«(50,10,2)

R_= 40.03

X s
51.50 10.28
52,36 T.22
51.81 4,31
51.21 2.39
51.18 1.8%
. 50.78 1.46

51.00 0.95

51.08 0.67
5115 Q.59
S1.01 0.42
51.01 0.36
51.04 0.26
$1.06 0.20
51.02 0.13
$1.03 o.M

$1.03 0.09
51.01 0.08
51.03 0.06
51.02 0.0%
51.03 0.04
51.03 0.04
T=(120,24,2)
R-. 122-39

X 3

214,16 644.3
138.15 119.8
139.72 33.28
121.63 14.31
123.70 11.24
123.12 9.25
122.46 6.25
121.69 3.90
121,75 3.50
122.73 3.00
122.34 1.99
122.30 1.50
122.41 1.25
122,31 0.78
122.39 0.75
122.43 0.59
122.37 0.54
122.46 0.38
122,39 0.34
122.38 0.30
122.39 0.24




Table A2

Leaat Squares Estimates of Fixed Target Position
100 Samples per Cell ¢ = 0.333 arad
Target Range = 40 na Various Directions
Constant Observer Veloclity: <.16,0,0> nm/s

Tw(28,.3,28.3,2) T=<30.6,25.7,2> Ta=<34.,6,20.0,2> Ta¢37.5,13.7,2>
# Points _ - -

on Tradk x s x 3 x s X s
s 39.91 1,42 80.07 1.81 - 39.99 2.26 40,38 3.10
8 hQ.1% 0.7% Q.08 0.77 39.99 1.07 40.16 1.56
10 30.02 0.48 39.99 0.57 39.96 0.76 40.06 1.07
12 37 .96 0.37 80.02 Q.46 T RO.LON 0.52 39.90 0.73
15 80.02 0.26 80.02 0.32 %0.01 0.39 39.99 0.54
18 40.02 0.22 £80.0% 0.2% 80.01 0.2% 39.99 0.39
20 40.00 0.18 80.01 0.17 80.02 0.21 39.98 0.33
a5 39.99 0.11 39.99 0.1% 80.02 0.17 40,00 0.26
30 20.00 0.09 %0.00 0.10 39.99 0.13 39.98 0.16
35 20.01 0.07 %0.00 0.07 39.99 0.10 20.02 0.12
80 80.00 0.05% 20.00 0,06 39.98 0.08 39.99 0.10
is 80.00 0.0 20.00 0.05% 39.99 0.06 %80.00 0.09
$0 39.99 0.04 30.00 0.0k - - '%0.00 0.0% 40.00 0.07
T=(38.6,10.3,2) T=<39.3, 6.9,2> T=<39.8, 3.5,2>
# Points - -
on Track x L] x s x s
] 80.13 4,30 30.22 6.87 31,88 12.56
8 80.05 1.98 80.5% 2.97 80.29 §.3%0
10 20.29 1.28 . 39.68 1.73 20.13 3.3%5
12 80.0% 1.02 39.88 1.29 20.17 2.53
18 39.99 0.65 40.03 0.91 80.2% 1.84
18 80.01 0.%8 80.11 0.72 39.94 1.32
20 30.01 0.82 39.93 0.T1 .21 1.09
25 39.99 0.30 39.99 o.M 39.96 0.77
30 39.96 0.21 30.02 0.33 §0.09 0.55
35 40.03 0.18 39.96 0.21 39.93 0.39
%0 20.01 0.12 40.00 0.21 40.01 0.35
AS 39.99 0.12 30.00 0.17 39.99 0.30
50 40.02 0.09 39.98 0.12 40.02 0.23




Table A3

Least Squares Estimates of Fixed Target Position
100 Samples per Cell ¢ = 0,333 arad
Target Range = {0 nm Various Directions
Initial Observer Velocity: <.16,0,0> nm/s
Observer Acceleration: <0,-.006,0> nm/s?

T.(2°l3.23-3|2) T-(30.6.25.7.2> T-<3.-6.2°c°'2> T-<37-5.13-7.2>
¢ Points _ - - -

on Track X s x s x s x s
S 30 28 1.31 39.98 1.4 80,45 1.56 Ho.1¢ 2.28
8 %0.18 0.53 80.0M 0.69 39.93 0.74 39.92 0.96
10 39.9% 0.40 39.89 0.87 39.97 0.51 39.96 0.75
12 §0.0% 0.28 40.00 0.29 80.07 0.36 490.00 0.48
18 20.08. 0.21 39.99 0.2 %0.00 0.23 40.00 0.3
18 39.98 0.1% 80.00 0.16 39.99 0.19 " 39.99 0.19
20 80.01 0.12 39.97 0.13 39.98 0.14 39.98 0.17
25 80,01 0.09 39.99 0.09 39.99 0.10 ko.02 0.11
30 80,01 0.0% 39.99 0.06 %80.00 0.06 40.01 0.06
33 80.00 0.0% 39.99 0.0% §0.01 0.0S 40.00 0.05
A0 80.00 0.03 80.00 0.0% %0.00 0.0k 40.00 0.03
As 80.00 0.03 39.99 0.03 30.00 0.03 - h0.00 0.03
50 20,00 0.02 20.00 0.02 80.00 0.02 40.00 0.02

r-(33.6.‘0.3.2) T.<3913. 6.9.2) T-<39|8. 3-5.2)

¢ Points  _ - -

on Track x 8 x s x ]
S NO. 1N 3.10 A1.0K 8.88 MO.10 6.04
8 39.79 1.3% 80.12 1.61 40.5%9 2.37
12 39.95 0.%2 39.99 0.73 39.92 0.87
15 39.96 0.37 40.00 0.3 80.03 0.51
18 39.98 0.25% 39.99 0.26 N0.02 0.36
20 240.01 0.19 %0.00 0.1 39.99 0.2%
a5 A0.01 0.12° 39.99 0.14 40,02 - 0.13
30 30,00 0.08 80.01 0.07 40.00 0.09
35 39.99 0.08% 39.99 0.06 80.00 0.06
X0 40.00 0.05 40.00 0.03 %0.00 0.04
s %0.00 0.03 39.99 0.03 40.00 0.03
50 80.00 0.02 20.00 0.02 80.00 0.03




Table A4

Least Squares Estimates of Fixed Target Position

100 Samples per Cell ¢ = 0.333 mrad
farget Location: (50,40,2) Rarnge = 64.06 nm
Initial Observer Velocity: <,16,0,0> nm/s
a=»<,.006,0,0> a=<0,0,0> ar<0,.006,0> a=<0,-,006,0>
# Points  _ - - -
on Track X s X s 3 s X s
4 64,32 5.58 64,74 6.31 63.12 6.87 64.18 5.58
5 64,82 4,24 64.11 4,18 6u4. 48 4,71 63.74 4.03
6 63.97 3.26 63.95 2,83 64.63 3.83 65.2%8 2.93
8 64,0¢ 1.87 64.09 2.28 63.86 2.43 63.81 1.80
9 64,22 1.48 63.91 1.65 64,33 2.01 64,12 1.39
10 64,29 1.29 64.30 1.50 64.15 1.87 64.10 1.20
12 63.95 0.93 63.86 1.01 64.15 1.51 64.04 0.86
15 64.06 0.64 64.16 0.79 64,12 1.21 63.95 0.60
16 63.96 0.54 64.06 0.66 64,13 1.12 63.95 0.54
18 64.08 0,44 64.02 0.59 64,01 0.88 64.11 0.49
20 63.95 0.38 64.12 0.54 64,05 0.85 64.05 0.33
2% 64.04 0.26 64.03 0.35 64,19 0.78 64.04 0.27
25 64,04 0.24 64.02 0.39 64,09 0.75 64,07 0.23
30 64,03 0.17 64.08 0.29 63.98 0.72 64.08 0.15
32 64.07 0.13 64.07 0.22 64,05 0.69 64.06 0.15
35 64.06 0.11 64.04 0.22 64,18 0.66 64.07 0.12
36 64.06 0.1 64.05 0.21 64,08 0.69 64.06 0.11
4o 64,07 0.09 64,08 0.16 63.95 0.60 64.08 0.08
45 64,06 0.06 64.06 0.14 64.10 0.52 64,06 0.08
43 64.07 0.05 64.06 .13 64.01 0.40 64.06 0.07
50 64.07 0.05 64.06 0.11 64,08 0.30 64.06 0.06




Table A15

Least Squares Estimates of Fixed Target Position

100 Samples per Cell ¢ = 0.333 mrad
Target Location: (50,10,2) Range = 51.03 nm
Initial Observer Velocity: <.16,0,0> nm/s
a=<,.006,0,0> a=<0,0,0> a=<0, .006,0> a=<0,-,006,0>
# Points  _ - _ _
. on Track X s X s X s X s

4 56.52 23.67 55.57 16.03 56.92 35.39 51.27 10.87
5 51.20 8.09 52.53 8.86 57.59 18.u1 52.46 6.11
6 51.77 6.48 51.90 6.99 54,29 12.98 51.30 4.89
8 50.82 3.42 51.11 4,27 53.92 12.09 51.10 2.15
9 51.68 2.93 51.14 3.69 50.85 8.21 51.13 2.15
10 51.30 2.56 51.24 2.40 52.64 10.01 50.99 1.37
12 50.95 1.82 51.30 1.93 51.19 5.91 51.15 1.08
15 50.88 1.26 50.87 1.52 50.86 3.21 51.08 0.61
16 51.21 1.09 51.35 1.39 51.03 2.38 51.06 0.62
18 51.04 0.82 50.96 1.16 51.21 1.59 51.04 Q.46
20 50.96 0.66 51.05 0.95 51.16 1.06 51.02 0.32
ol 51.03 0.43 51.17 0.72 51.01 0.61 51.06 0.23
25 51.00 0.45 51.05 0.65 50.99 0.46 51.04 0.19
30 5t.04 0.32 51.08 0.52 51.05 0.24 51.05 0.14
32 51.06 0.23 50.98 0.ul 51.04 0.20 51.05 0.12
35 51.03 0.22 51.04 0.M1 51.02 0.16 F .03 0.09
36 51.02 0.19 51.00 0.42 51.05 0.14 51.03 0,09
40 51.02 0.15 51.04 0.29 51.03 0.10 51.03 0.06
45 51.02 0.10 51.07 0.25 51.04 0.08 51.04 0.05
48 51.02 9.10 51,04 0.20 51.03 0.06 51.03 0.04
50 51.02 0.07 51.02 0.22 51.02 0.05 51.03 0.04
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TABLE A16

Azimuth Only Least Squares Estimates of Fixed Target Position
100 Samples per Cell

# Points
on Track

Lo e XNV BF 4

10
12
15
16
18
20
24
25
30
32
35
36
40
45
48
50

# Points
on Track

VoONN &

10
12

16
18
20
24
25
30
32
35
36
4o
45
48
50

Constant Observer Velocity:

T=(20,16,2)

R = 25.69

x s
25.70 1.00
25.59 0.65
25.65 0.53
25.63 0.3
25.72 0.26

25.70 0.23
25.65 0.17
25.67 0.12
25.70 0.1

25.68 0.08
25.68 0.07
25.69 0.05
25.68 0.05
25.69 0.04
25.69 0.03
25.69 0.03
25.69 0.03

25.69 0.02
25.69 6.02
25.69 0.02
25.69 0.01

T=(60,48,2)
R_= 76.86
X L]
76.51 8.7 -
75.49  5.70
75.76  4.15
76.24  3.21
76.11  2.40
76.83  2.16
76.27  1.43
76.80 1.16
76.66  0.95
76.66  0.85
76.84  0.78
76.73  0.51
76.73  0.57
76.84  0.42
76.83  0.32
76.79  0.32
76.80 0.3

76.85 0.24
76.84 0.21
76.84 0.19
76.84 0.17

T=(30,24,2)
R_= 38.47
X 3

38.55
38.54
38.39
38.36
38.38
38. by
38.48
38.42
38.51
38. 44
38. 46
38.49
38.46
38.47
38.46 0.08
38.47  0.07
38.46 0.08
38.47  0.05
38.48  0.05
38.47  0.04
38.47  0.04

00000000000 —»—~N
. ..

—_-— e S NN NW E G~ O~

OCMWERNU-TBIW AW &=U

® & & & s+ & s @

T=(80,64,2)
R = 102.47
X S

96.90 t15.80
100.89 10.89
101,77 8.42
100.42 s5.10
101.98 4.33
101.79 3.73
102.00 2.90
102.10 2.18
102.11 1.95
102.08 1.41
102.13 1.33
102.42 1,03
102.26 0.98
102.29 0.72
102.35 0.64
102.48 0.53
162.39 0.63
102.42 0,42
102.43 0.39
102.4%3 0.33
102,44 0.29
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g = 0.333 mrad

<.16,0,0> nm/s

T=(U40,32,2)
R = 51,26
X s
50.69 3.58

51.35 2.92
50.89 2.24
51.06 1.38
51.21 1.08
51.30 0.96

51.09 0.71
51.20 0.52
51.13 0.u5
51.24 0.38
51.13 0.33
S1.22 0.24
51.22 0.22
51.21 0.18
S51.26 0.13
51.25 0.12
51.26 0.12
51.26 0.11
51.26 0.08
51.27 0.07
51.27 0.07

T=(100,80,2)
R_= 128.08
X s

120.07 21.27
125.27 16.16
124.04 13,60
125.58 8.04
126.07 . 7.98
126.05 5.06
127.30 .50
127.34  3.03
127.39  3.21

127.49 2.4

127.45  1.95
127.93 1.58
127.78 1.28
128.05 1.12
128.01 0.98
127.95 0.90
127.95 0.86
127.90 0.63
128.10 0.63
128.05 0.53
128.03 0.52

T=(50,40,2)
R = 64,06

X s
62.59 5.47
64,06 u.69
63.85 3.02
63.73 2.02
63.85 1.63
63.58 1.28
63.87 0.99
63.99 0.80
64,12 0.73
63.95 0.54
63.96 0.52
64,02 0.43
64.07 0.35
64.03 0.26
64.03 0.21
64.05 0.21
64,01 0.19
64,04 Q.
64.03 0.
64,05 0.
64.07 o}

T=(120,96,2)
R_= 153.69

X L)

145,50 37.44
143,75 23.39
153.66 19.79
147.52 11.36
150.42 9.66
150.46 8.79
151.05 6.18
151.22 4,47
151.29 4.20
152.98 4.04
162.62 2.80
152.88 2.44
153.07 2.24
153.15 1.60
153.27 1.51
153.48 1.26
153.35 1.20
1$3.59 0.92
153.51 0,92
153.49 0.81
153.52 0.64




' TABLE A17
Median Based Estimates of Fixed Target Position
Medians of all Pairs of Two-point Estimates
100 Samples per Cell 0 = 0.333 mrad
Constant Observer Velocity: <.16,0,0>

T = (50|1002) T = (50.’40,2)
R = 51,03 . R = 64,06
# Points - -
on Track X s X s
y 51.53 15.55 65.09 6.30
5 49,69 10.53 64.23 4,u6
6 50.03 T7.99 . 64,20 3.59
8 50.38 4.32 63.99 2.29
9 50.11 3.82 64,02 1.92 |
10 50.93 3.10 64,15 1.38
12 50.49 2.31 64.24 0.95
15 50.52 1.56 64.01 0.85
16 51.19 1.43 64.20 0.75
18 50.84 1.12 64.02 0.63
20 50.82 0.96 64.05 0.53
24 50.93 0.69 64.13 0.38
25 50.91 O0.T7H 64.06 0.36
30 50.97 0.54 64.09 0.28
32 51.07 0.33 64.04 0.25
35 51.01 0.42 64.07 0.23
36 50.97 0.36 64.05 0.24
4o 50.99 0.32 64.06 0.15
45 50.98 0.25 64.09 O0.14
48 51.01 0.26 64,07 0.1
50 51.02 0.20 64,06 0.12
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TABLE 418

Least Squares Estimates of Constant Velocity Target Parameters
100 Samples per Cell ¢ = 0.333 mrad
Target: Initial Position = (50,10,!') Range = 51.00
Various Velocities
Initial Observer Velocity: <.16,0,0>
Various Observer Accelerations

a = <0,~-,002,.006> a = <0,-.006,.002>
Ve (=,1,=-.1,0> V = <=-,1,-,1,0>
Range Vx Range Vx
# Points - _ _ _
on Track X s X s X s X s
15 50.77 5.37 =~0.05 0.26 50.45 5.05 0.12 0.55%
18 50.25 4,39 -0.07 0.18 49.03 4.68 0.10 0.35
20 50.66 3.10 -0.08 0.12 49 .02 5.31 0.06 0.36
24 50.94 1.61 -0.09 0.08 50.35 3.28 -0.06 0.16
30 50.40 2.59 -0.08 0.07 50.36 2.83 -0.08 0.09
36 50.68 1.55 ~-0.09 0.03 50.77 1.93 -0.10 0.05
4o 50.97 0.95 -0.10 0.02 50.80 1.64 -0.10 0.04
48 50.98 0.64 ~0.10 0.01 51.03 0.72 -0.10 0.01
54 50.97 0.53 -0.10 0.01 50.81 1.28 -0.10 0.02
60 50.96 0.34 -0.10 0.00 51.08 0.45 -0.10 0.01
75 50,91 0.17 -0.10 0.00 51.01 0.26 -0.10 0.00
a = <0,~-.006,.002> a = <0,-.002,.006>
V = <0,-.16,0> V = <0,-.16,0>
Range Vy Range Vy
# Points  _ - - _
on Track X s . b 4 s X s X s
15 53.92 9.81 -0.1% 0.05 51.38° 4,31 -0.17 0.02 -
18 50.71 3.80 ~-0.16 0.02 51.06 2.66 -0.16 0.01
20 51.08 2.88 -0.16 0.02 51.22 2.22 -0.16 0.01
24 51.16 1.27 -0.16 0.01 50.74 1.40 -0.16 0.00
30 50.96 0.82 -0.16 0.01 50.94 0.87 -0.16 0.00
36 51.16 0.58 -0.16 0.00 50.84 0.64 -0.16 0.00
40 50.96 0.49 ~-0.16 0.00 50.93 0.45 -0.16 0,00
48 50.99 0.45 -0.16 0.00 51.05 0.30 -0.16 0,00
54 50.87 0.35 -0.16 0.00 50.98 0.28 -0.16 0,00
60 50.88 0.30 -0.16 0.00 50.96 0.22 -0.16 0.00
75 50.99 0.19 -0.16 0.00 50.95 O.14 -0.16 0.00
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TASLE A1?

Least Sauares Estimates cf (crstant vVelocity Target Farameters
10C Sangles per Cell 2 0.333 mrac
Target: initial Positicrn = (50,4C,1) Range = €4.Céh
Velocity:<=.1,~.1 ,0>
Iritial Ctserver Velocity: <.16,0,0>
varfous QOcserver Acceleraticns

. 3 = €Gre006,.50¢> A = <Cr=al0&,.CGCo>
Rarje vx Range Vx
# Points -
en Track X s x s % s x s
15 65.33 5«61 =“0a1é G117 86,213 8.80 -C.16 GC.16
18 65.08 3.72 =J.15 C€.10 €6.97 <33 -~C.15 0.14
20 64.8C 1.C5 “0.14 C.08 §4.91 5.18 =C.12 C.L¢
2‘ 6‘.1‘ 2-24 -0.1C C.Oé 6‘.7( 3-79 -CC11 :ICé
3¢ bbdata? 1.5% -0.11 C.C4 64 .36 2.51 -C.11 G.C4
34 63.99 1.15 =-0.10 C.G2 63.8¢ 1.75 -C.1C C.C2
4Q 63.%1 1.11 =-0.1C C.0¢ €Ca25S .38 ~C.CS el S
49 63.99 0.7C ~J.10 G.01 63.85 1.01 ~C.10 J.C1
54 64409 Cabd -0.1C C.00 84.1C 0.30C -C.10 Q.01
6C 63.98 C.44 =0.1C C.09 64.07 C.%7 -C.10 J.0C1
75 63.96 Q.2C =-J.1C C€.00 §2.84§ 0.37 -C.10 Q..oC
a = <0,.002,.006> a = <0,.00¢,.C02>
, Rarge . Vx Range Vx
3 Points
on Track X s x s x s x s
1§ 64.C9 7.Cé 0.0C C.09 65.8C 8.67 -C.02 0.C5
18 63.11 5.1C =-0.03 C.09 P PY-1- 693 - =C.02 C.C¢
20 02.74 b.24 =005 C.Q¢ 65.06 Lal? -C.01 C.C3
2‘ 64,39 2.98 -0.11 C-06 63.7C 2«00 "C.OZ COCé
30 64.C2 1.62 =-0.1C C.03 62.32 1.72 -C.01 0.CS
36 64.19 1.39 =0.1C C.02 80.74 0.86¢ C.02 G.C1
‘0 64.18 1.01 -0.1c 6001 61.‘2 2.0& "C.03 O-Cé
438 84.C0 076 “0.10 C.01 63.7¢ 1.3¢C =C.10 J.C2
S4 $3.81 1.34 =-0.1C (.02 61.7¢ 334 “C.306 G.CS
64 64.01 Cabd “0.1C G000 ~ 64.0¢ Q.52 -C.10 C.C1
75 63.85 1.25 “0.1C C.01 ° 64.02 0.29 -C.10 Q.CC
!




TABLE A1Q (Cantinued)

Least Sauares Estimates cf Ccnstant vVelocity Target Farareters
10C Sarcles oer Cell = 0.333 mrac
Target: Initial Pasiticn = (50,43,1) Ffange = ¢é4.04

Velgcitys:<=.1,~.1 .,
Initial Ctserver Velocity: <.1¢,3,0>
Various Obtsarver Acceleratians

a = <0,=.0C2,.2C¢> a = <J,~,00¢,.002>
Rarge Vx Range Vx
# Points - :
on Track X s x s x 5 x s
15 67407 9.70 ~Ce18 (.22 70.88 2E.26 =C.’C Ga.4¢
18 84.75 5.31 -0.11 (.11 64.74 10.m4 ~C.11 Q.18
20 65.32 Sa49 =0.17 Q.10 63.04 1Q.23% -C.08 G.1¢
264 64.31 J.C? ~0.11 GC.305 S8.4E $.47 -C.02¢ QJ.C9
30 03.98 2.13 -0.1C .03 56.5¢ 1.92 ~C.01 J.C2
36 646.17 1.5¢ =-0.1C (.02 55«47 1.59 (.00 0.C2
40 63.68 1.35 -J.1C C.C2 55.21 3.25 C.CO J.C2
48 64.C6 0.82 “J.1C (.01 63.5C 54469 ~C.07 G.C¢
56 64.34 Q‘CZ -0-10 C-°1 01-?‘2 L .46 ‘C.UB U-Clo
460 63.53 Q.65 -0.1C (.01 ¢4.03 1.04 ~C.10 0.01
5 63.97 Ja21 -0.1C (.00 64 .CC .82 =C.10 C(C.CC
a 2 €0,.006,.0C4>
Range ) Vx
# Points
on Track X s x s
15 65.16 8-7c -0-16 C.15
16 6‘-82 5.5‘ -0.1¢ C.1'|
20 6‘-91 R ‘.Ck -0.12 C.Og
24 64 ,C5 254 “0.11 (.06
30 434835 1.7¢ =0.1C G.04
3é 64.C0 1.25 -0.1C C(C.C2
40 64.04 Q.58 -0.1C C.02
48 82.14 3.23 =-0.07 C.C5
S& 64.C5 0a.44 -0.1C C.01
60 §4.08 Q.52 -0.1C C.01
75 43.9S5 0.21 -0.1C €.09
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TAELE A19 (Continued)

Least SQuares Estimates c¢f Ccnstant vVelcecity Target Farameters
10C Samcles cer Cell = 0.233 mrac
Target: Initial Pasiticn = (5CG,40,1) Range = €4.04
- Velocity:<Cr~.16 ,0>
Initial Otserver Velccity: <.16,0,0>
various Otserver Accelerations

2 = <0,~.006,.002> 3 = <C,=.C02,.C08> |
Rarqge vy Range Vy ‘
% Points ' ‘

on Track X s x s x s X s !
15 70.62 35.5¢ =0.41 1.33 73.24 15,63 =C.41 G462
18 66.85 5465 =0.26 G192 6757 7.78 -C.26 GC.22
29 66,86 5.C0 -0.23 Ca15 63.1¢ 8.98 -C.25 (C.2C
24 6472 2.47 . =0.1¢ C.04 €4.55 5.83 -C.17 C.12
36 62.80 234 -0.14 C.04 63.95 3.6 =-C.16 C.CS
36 61.26 2.5C =G.12 G.04% 837 1.36 -C.1¢ 0.C2
40 81.68 2.65 -0.13 C.03 63.02 1.35 -C.15 3.C2
48 61.83 3.77 =-0.14 C.04 63.18 1.35 -€.15 Q.C1
54 64.9GC 0.54 =-0.17 C.01 64494 C.%4 -C.1¢ g.C1
60 63.16 g.82 =0.15 (C.01 63.3¢ 0.51 -C.1é6 ¢.CC
75 63.29 2.€1 -0.1¢ C.02 63.72 0.38 -€.16 Q.(C
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TABLE A19 (Continued)

Least Squares Estimates of Constant Velocity Target Parameters
100 Samples per Cell ¢ = 0.333 mrad
Target: Initial Position = (50,40,1) Range = 64,04
Veloecity:<-.2,~.2 ,0>
Initial Observer Velocity: <.16,0,0>
Various Observer Accelerations

a = <0,.006,.006> a = <0,-.006,.006>
Range Vx Range Vx
# Points - - - -
on Track X s X s X -8 X s j
15 65.42 6.09 -0.26 0.23 65.57 9.88 -0.25 0.25 ?
18 64.44 3,98 -0.20 0.16 65.81 7.14 -0.24 0.15 |
20 63.95 4.51 -0.22 0.1% 63.80 5.61 -0.20 0,12
24 64.45 2.90 -0.21 0.08 64.56 4.54 -0.21 0.08
30 64,34 2.03 -0.21 0.04 64,07 2.82 -0.20 0.04
36 64.20 J.46 -0.20 0.02 63.94 1.76 -0.20 0.02
40 63.97 1.10 -0.20 0.02 61.24 6.01 -0.16 0,08
48 64.03 0.70 -0.20 0.01 62.91 5.55 -0.19 0.07
54 64.18 0.59 -0.20 0.01 63.92 0.73 -0.20 0.01
60 64.03 0.39 -0.20 0.00 64,14 0.52 -0.20 0.01
.75 63.94 0.17 -0.20 0.00 64.02 0.32 -0.20 0.00
a = <0,.002,.006> a = <0,.006,.002>
Range Vx , Range Vx
# Polints  _ - - =
on Track X s x s x s X s
15 59.88 7T.65 0.03 0.03 6u4,38 8.25 -0.03 0.06
18 59.86 4,20 -0.05 0.13 65.52 6.47 0,00 0.02
20 60.61 4,69 -0.07 0.13 63.68 3.89 -0.03 0.07
24 63.12 3.56 -0.17 0.08 61.91 2.55 -0.04 0.10
30 61.37 4,73 -0.14 0.10 59.81 2.39 -0.02 0.08
36 64,02 1.43 -0.20 0.02 56.13 2.20 0.02 0.06
4o 63.87 1.18 -0.20 0.02 61.07 4,45 -0.13 0.10
48 64.12 0.78 -0,20 0.01 62.28 h,uy2 -0.17 0.07
54 64.08 0.51 -0,20 0.01 64,04 0.76 -0.20 0.01
60 64.00 0.48 -0.20 0.00 64,13 0.58 -0.20 0.01
75 63.95 0.28 -0.20 0.00 64.07 0.32 -0.20 0.00
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min

1%

13
10%
15%
201
2%%
30%
3ss
40%
1333
$0%
55%
603
652
T0%
75%
.1}
853
90¢%¢
95%
991
nax

TABLE A20

Least Squares Estimates of Consatant Velocity Target Position

1000 Samples per Cell
Target -- Location:(50,40,3)

61.76
5.69

48,43
48.66
48.92
hg .12
9 11
62.03
62.61
62.93%
63-20
63.m
63.65%
63.8%
68,03
6%.18
68,37
6.5
64,89

65.12 .

65.%6
65.7%
66.25
67.39
68.78

62.00
5.56

88.46
48.67
48.96
'9.16
§9.60
62.25%
62.70
63.04
63.26
63.88
63.73
63.94
63,11

64.27

6ar.a7
6..71
64,95
65-'20
65.48
65.90
66.11
67.52
68.56

61.88
5.64

48.54
bg.69
48.94
49.08
49.49
62.16
62.63
62.95%
63.26
63.53
63.74
63.92
64,10

- 68,28

68,84
64.6%
68.92

65.17.

65.50
65.86
66.33
67.26
68.73

-

¢ = 0,333 ar
Range:
Observer -- Initial Veloeoity:<.16,0,0>

61.87
5.76

48.50
88.64
48.90
89.09
49.1
62017
62.64
62.93
63.25
63.51
63.76
63.93
68.07

-68.26

64.45
68.79
65.05
65.34
65.66
66.0%
66.59
67.57
69.22

61.73
5.82

48.39
ua.7°
48.92
49.09
49,34
62.08
62.69
63.00
63.30
63.45
63.69
63.88
64.05
64..29
64.87
64.66
64.89
65.19
65.49
65.87
66.39
67.45
69.75

75

"h0 Points/Track

64.04 Velocity:

61.50 61.87

5.96 5.7
48.51 48,42
48.68 48.73
48,92 U48.95
49.08 &9.12
49.26 49,42
61.53 62.13
62.48 62.64
62.78 62.99
“63.09 63.28
63.35 63.48
63.59 63.68
63.7 63.92
63.95 64,09
64.15 64,27
64.36 64.52
64.60 64.77
64.87 65.02
65.1T 65.2h4
65.85 65.57
65.87 65.95
66.88 66.4%9
67.59 67.53
68.50 69.26

10 Replicates
<-.20,-.20,0>
Acceleration:<0,~.006,.006>

61.73 .

5.77

ug.sé
¥8.70
4u8.88
49.08
49 .34
61.80
62.53
63.02
63-28
63.45
63.68
63.85
63.99
64.15
64,42
6%.59
64.88
65.24
65.57
65.92
66.36
6T.49
68.35

61.€69
.83

48,47
48.67
48,92
49 .08
ug.35
61.78
62.45
62.77
63.17
63.49
63.70
63.88
6u4.0u
64.2u
68,4
64.71
64,93
65.21
65.52
65.93
66.L3
67.4%¢6
68.82

on
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